Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) |
2 |
|
dvdsssfz1 |
⊢ ( 𝑛 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
4 |
1 3
|
ssfid |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ∈ Fin ) |
5 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } → 𝑘 ∈ ℕ ) |
6 |
5
|
nncnd |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } → 𝑘 ∈ ℂ ) |
7 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℂ ) |
8 |
|
cxpcl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ ) |
9 |
6 7 8
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ) → ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ ) |
10 |
4 9
|
fsumcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ ) |
11 |
10
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑛 ∈ ℕ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ |
12 |
|
df-sgm |
⊢ σ = ( 𝑥 ∈ ℂ , 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ) |
13 |
12
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℂ ∀ 𝑛 ∈ ℕ Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛 } ( 𝑘 ↑𝑐 𝑥 ) ∈ ℂ ↔ σ : ( ℂ × ℕ ) ⟶ ℂ ) |
14 |
11 13
|
mpbi |
⊢ σ : ( ℂ × ℕ ) ⟶ ℂ |