Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → 𝑀 ∈ ℕ ) |
2 |
|
simpr2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → 𝑁 ∈ ℕ ) |
3 |
|
simpr3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
4 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } |
5 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } |
6 |
|
eqid |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } |
7 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ℕ |
8 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ) → 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ) |
9 |
7 8
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ) → 𝑗 ∈ ℕ ) |
10 |
9
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ) → 𝑗 ∈ ℂ ) |
11 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ) → 𝐴 ∈ ℂ ) |
12 |
10 11
|
cxpcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ) → ( 𝑗 ↑𝑐 𝐴 ) ∈ ℂ ) |
13 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ |
14 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
15 |
13 14
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑘 ∈ ℕ ) |
16 |
15
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑘 ∈ ℂ ) |
17 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝐴 ∈ ℂ ) |
18 |
16 17
|
cxpcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑘 ↑𝑐 𝐴 ) ∈ ℂ ) |
19 |
9
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 𝑗 ∈ ℕ ) |
20 |
19
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 𝑗 ∈ ℝ ) |
21 |
19
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 𝑗 ∈ ℕ0 ) |
22 |
21
|
nn0ge0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 0 ≤ 𝑗 ) |
23 |
15
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 𝑘 ∈ ℕ ) |
24 |
23
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 𝑘 ∈ ℝ ) |
25 |
23
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 𝑘 ∈ ℕ0 ) |
26 |
25
|
nn0ge0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 0 ≤ 𝑘 ) |
27 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → 𝐴 ∈ ℂ ) |
28 |
20 22 24 26 27
|
mulcxpd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → ( ( 𝑗 · 𝑘 ) ↑𝑐 𝐴 ) = ( ( 𝑗 ↑𝑐 𝐴 ) · ( 𝑘 ↑𝑐 𝐴 ) ) ) |
29 |
28
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ) → ( ( 𝑗 ↑𝑐 𝐴 ) · ( 𝑘 ↑𝑐 𝐴 ) ) = ( ( 𝑗 · 𝑘 ) ↑𝑐 𝐴 ) ) |
30 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑗 · 𝑘 ) → ( 𝑖 ↑𝑐 𝐴 ) = ( ( 𝑗 · 𝑘 ) ↑𝑐 𝐴 ) ) |
31 |
1 2 3 4 5 6 12 18 29 30
|
fsumdvdsmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ( 𝑗 ↑𝑐 𝐴 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑘 ↑𝑐 𝐴 ) ) = Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } ( 𝑖 ↑𝑐 𝐴 ) ) |
32 |
|
sgmval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝐴 σ 𝑀 ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ( 𝑗 ↑𝑐 𝐴 ) ) |
33 |
1 32
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( 𝐴 σ 𝑀 ) = Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ( 𝑗 ↑𝑐 𝐴 ) ) |
34 |
|
sgmval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 σ 𝑁 ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑘 ↑𝑐 𝐴 ) ) |
35 |
2 34
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( 𝐴 σ 𝑁 ) = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑘 ↑𝑐 𝐴 ) ) |
36 |
33 35
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( ( 𝐴 σ 𝑀 ) · ( 𝐴 σ 𝑁 ) ) = ( Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ( 𝑗 ↑𝑐 𝐴 ) · Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ( 𝑘 ↑𝑐 𝐴 ) ) ) |
37 |
1 2
|
nnmulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
38 |
|
sgmval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 · 𝑁 ) ∈ ℕ ) → ( 𝐴 σ ( 𝑀 · 𝑁 ) ) = Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } ( 𝑖 ↑𝑐 𝐴 ) ) |
39 |
37 38
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( 𝐴 σ ( 𝑀 · 𝑁 ) ) = Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } ( 𝑖 ↑𝑐 𝐴 ) ) |
40 |
31 36 39
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( 𝐴 σ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 σ 𝑀 ) · ( 𝐴 σ 𝑁 ) ) ) |