| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
| 2 |
|
sgmval2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ) |
| 4 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 1 ... 𝐵 ) ∈ Fin ) |
| 5 |
|
dvdsssfz1 |
⊢ ( 𝐵 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) |
| 7 |
4 6
|
ssfid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ∈ Fin ) |
| 8 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } → 𝑘 ∈ ℕ ) |
| 9 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℕ0 ) |
| 10 |
|
nnexpcl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑘 ↑ 𝐴 ) ∈ ℕ ) |
| 11 |
8 9 10
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → ( 𝑘 ↑ 𝐴 ) ∈ ℕ ) |
| 12 |
11
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → ( 𝑘 ↑ 𝐴 ) ∈ ℤ ) |
| 13 |
7 12
|
fsumzcl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ∈ ℤ ) |
| 14 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 15 |
|
iddvds |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∥ 𝐵 ) |
| 16 |
14 15
|
syl |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∥ 𝐵 ) |
| 17 |
|
breq1 |
⊢ ( 𝑝 = 𝐵 → ( 𝑝 ∥ 𝐵 ↔ 𝐵 ∥ 𝐵 ) ) |
| 18 |
17
|
rspcev |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐵 ) → ∃ 𝑝 ∈ ℕ 𝑝 ∥ 𝐵 ) |
| 19 |
16 18
|
mpdan |
⊢ ( 𝐵 ∈ ℕ → ∃ 𝑝 ∈ ℕ 𝑝 ∥ 𝐵 ) |
| 20 |
|
rabn0 |
⊢ ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℕ 𝑝 ∥ 𝐵 ) |
| 21 |
19 20
|
sylibr |
⊢ ( 𝐵 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ≠ ∅ ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ≠ ∅ ) |
| 23 |
11
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → ( 𝑘 ↑ 𝐴 ) ∈ ℝ+ ) |
| 24 |
7 22 23
|
fsumrpcl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ∈ ℝ+ ) |
| 25 |
24
|
rpgt0d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 0 < Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ) |
| 26 |
|
elnnz |
⊢ ( Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ∈ ℕ ↔ ( Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ∈ ℤ ∧ 0 < Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ) ) |
| 27 |
13 25 26
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ∈ ℕ ) |
| 28 |
3 27
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) ∈ ℕ ) |