Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
3 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
6 |
4 5
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
7 |
|
sgmval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) → ( 𝐴 σ ( 𝑃 ↑ 𝑁 ) ) = Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ( 𝑛 ↑𝑐 𝐴 ) ) |
8 |
1 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 σ ( 𝑃 ↑ 𝑁 ) ) = Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ( 𝑛 ↑𝑐 𝐴 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑃 ↑ 𝑘 ) → ( 𝑛 ↑𝑐 𝐴 ) = ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) ) |
10 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... 𝑁 ) ∈ Fin ) |
11 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) = ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) |
12 |
11
|
dvdsppwf1o |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ) |
13 |
2 5 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ) |
14 |
|
oveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑃 ↑ 𝑖 ) = ( 𝑃 ↑ 𝑘 ) ) |
15 |
|
ovex |
⊢ ( 𝑃 ↑ 𝑘 ) ∈ V |
16 |
14 11 15
|
fvmpt |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) ‘ 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ↑ 𝑖 ) ) ‘ 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
18 |
|
elrabi |
⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } → 𝑛 ∈ ℕ ) |
19 |
18
|
nncnd |
⊢ ( 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } → 𝑛 ∈ ℂ ) |
20 |
|
cxpcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℂ ) |
21 |
19 1 20
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ) → ( 𝑛 ↑𝑐 𝐴 ) ∈ ℂ ) |
22 |
9 10 13 17 21
|
fsumf1o |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑛 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝑁 ) } ( 𝑛 ↑𝑐 𝐴 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) ) |
23 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
25 |
24
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
26 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
27 |
25 26
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 · 𝐴 ) = ( 𝐴 · 𝑘 ) ) |
28 |
27
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 ( 𝑘 · 𝐴 ) ) = ( 𝑃 ↑𝑐 ( 𝐴 · 𝑘 ) ) ) |
29 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑃 ∈ ℕ ) |
30 |
29
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑃 ∈ ℝ+ ) |
31 |
24
|
nn0red |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℝ ) |
32 |
30 31 26
|
cxpmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 ( 𝑘 · 𝐴 ) ) = ( ( 𝑃 ↑𝑐 𝑘 ) ↑𝑐 𝐴 ) ) |
33 |
29
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑃 ∈ ℂ ) |
34 |
|
cxpexp |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑𝑐 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
35 |
33 24 34
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
36 |
35
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ↑𝑐 𝑘 ) ↑𝑐 𝐴 ) = ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) ) |
37 |
32 36
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 ( 𝑘 · 𝐴 ) ) = ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) ) |
38 |
33 26 24
|
cxpmul2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ↑𝑐 ( 𝐴 · 𝑘 ) ) = ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |
39 |
28 37 38
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) = ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |
40 |
39
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑ 𝑘 ) ↑𝑐 𝐴 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |
41 |
8 22 40
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 σ ( 𝑃 ↑ 𝑁 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑃 ↑𝑐 𝐴 ) ↑ 𝑘 ) ) |