| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | sgmval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  σ  𝐵 )  =  Σ 𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  σ  𝐵 )  =  Σ 𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) | 
						
							| 4 |  | ssrab2 | ⊢ { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 }  ⊆  ℕ | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  ∧  𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } )  →  𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } ) | 
						
							| 6 | 4 5 | sselid | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  ∧  𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } )  →  𝑘  ∈  ℕ ) | 
						
							| 7 | 6 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  ∧  𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } )  →  𝑘  ∈  ℂ ) | 
						
							| 8 | 6 | nnne0d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  ∧  𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } )  →  𝑘  ≠  0 ) | 
						
							| 9 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  ∧  𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } )  →  𝐴  ∈  ℤ ) | 
						
							| 10 | 7 8 9 | cxpexpzd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  ∧  𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } )  →  ( 𝑘 ↑𝑐 𝐴 )  =  ( 𝑘 ↑ 𝐴 ) ) | 
						
							| 11 | 10 | sumeq2dv | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  →  Σ 𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } ( 𝑘 ↑𝑐 𝐴 )  =  Σ 𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } ( 𝑘 ↑ 𝐴 ) ) | 
						
							| 12 | 3 11 | eqtrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  σ  𝐵 )  =  Σ 𝑘  ∈  { 𝑝  ∈  ℕ  ∣  𝑝  ∥  𝐵 } ( 𝑘 ↑ 𝐴 ) ) |