| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sgnval | 
							⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							0xr | 
							⊢ 0  ∈  ℝ*  | 
						
						
							| 4 | 
							
								
							 | 
							xrltne | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  ∈  ℝ*  ∧  𝐴  <  0 )  →  0  ≠  𝐴 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mp3an2 | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  0  ≠  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							nesym | 
							⊢ ( 0  ≠  𝐴  ↔  ¬  𝐴  =  0 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylib | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ¬  𝐴  =  0 )  | 
						
						
							| 8 | 
							
								7
							 | 
							iffalsed | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  =  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝐴  <  0  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  - 1 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  - 1 )  | 
						
						
							| 11 | 
							
								2 8 10
							 | 
							3eqtrd | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ( sgn ‘ 𝐴 )  =  - 1 )  |