| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  0  ↔  𝐴  =  0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  <  0  ↔  𝐴  <  0 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							ifbid | 
							⊢ ( 𝑥  =  𝐴  →  if ( 𝑥  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							ifbieq2d | 
							⊢ ( 𝑥  =  𝐴  →  if ( 𝑥  =  0 ,  0 ,  if ( 𝑥  <  0 ,  - 1 ,  1 ) )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-sgn | 
							⊢ sgn  =  ( 𝑥  ∈  ℝ*  ↦  if ( 𝑥  =  0 ,  0 ,  if ( 𝑥  <  0 ,  - 1 ,  1 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							c0ex | 
							⊢ 0  ∈  V  | 
						
						
							| 7 | 
							
								
							 | 
							negex | 
							⊢ - 1  ∈  V  | 
						
						
							| 8 | 
							
								
							 | 
							1ex | 
							⊢ 1  ∈  V  | 
						
						
							| 9 | 
							
								7 8
							 | 
							ifex | 
							⊢ if ( 𝐴  <  0 ,  - 1 ,  1 )  ∈  V  | 
						
						
							| 10 | 
							
								6 9
							 | 
							ifex | 
							⊢ if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  ∈  V  | 
						
						
							| 11 | 
							
								4 5 10
							 | 
							fvmpt | 
							⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  |