Step |
Hyp |
Ref |
Expression |
1 |
|
sbgoldbb |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
2 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
3 |
|
evenz |
⊢ ( 𝑁 ∈ Even → 𝑁 ∈ ℤ ) |
4 |
3
|
zred |
⊢ ( 𝑁 ∈ Even → 𝑁 ∈ ℝ ) |
5 |
|
4lt6 |
⊢ 4 < 6 |
6 |
|
4re |
⊢ 4 ∈ ℝ |
7 |
|
6re |
⊢ 6 ∈ ℝ |
8 |
|
ltletr |
⊢ ( ( 4 ∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 4 < 6 ∧ 6 ≤ 𝑁 ) → 4 < 𝑁 ) ) |
9 |
6 7 8
|
mp3an12 |
⊢ ( 𝑁 ∈ ℝ → ( ( 4 < 6 ∧ 6 ≤ 𝑁 ) → 4 < 𝑁 ) ) |
10 |
5 9
|
mpani |
⊢ ( 𝑁 ∈ ℝ → ( 6 ≤ 𝑁 → 4 < 𝑁 ) ) |
11 |
4 10
|
syl |
⊢ ( 𝑁 ∈ Even → ( 6 ≤ 𝑁 → 4 < 𝑁 ) ) |
12 |
11
|
imp |
⊢ ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → 4 < 𝑁 ) |
13 |
2 12
|
eqbrtrid |
⊢ ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → ( 2 + 2 ) < 𝑁 ) |
14 |
|
2re |
⊢ 2 ∈ ℝ |
15 |
14
|
a1i |
⊢ ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → 2 ∈ ℝ ) |
16 |
4
|
adantr |
⊢ ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
17 |
15 15 16
|
ltaddsub2d |
⊢ ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → ( ( 2 + 2 ) < 𝑁 ↔ 2 < ( 𝑁 − 2 ) ) ) |
18 |
13 17
|
mpbid |
⊢ ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → 2 < ( 𝑁 − 2 ) ) |
19 |
|
2evenALTV |
⊢ 2 ∈ Even |
20 |
|
emee |
⊢ ( ( 𝑁 ∈ Even ∧ 2 ∈ Even ) → ( 𝑁 − 2 ) ∈ Even ) |
21 |
19 20
|
mpan2 |
⊢ ( 𝑁 ∈ Even → ( 𝑁 − 2 ) ∈ Even ) |
22 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑁 − 2 ) → ( 2 < 𝑛 ↔ 2 < ( 𝑁 − 2 ) ) ) |
23 |
|
eqeq1 |
⊢ ( 𝑛 = ( 𝑁 − 2 ) → ( 𝑛 = ( 𝑝 + 𝑞 ) ↔ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) ) |
24 |
23
|
2rexbidv |
⊢ ( 𝑛 = ( 𝑁 − 2 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) ) |
25 |
22 24
|
imbi12d |
⊢ ( 𝑛 = ( 𝑁 − 2 ) → ( ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ↔ ( 2 < ( 𝑁 − 2 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) ) ) |
26 |
25
|
rspcv |
⊢ ( ( 𝑁 − 2 ) ∈ Even → ( ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 2 < ( 𝑁 − 2 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) ) ) |
27 |
|
2prm |
⊢ 2 ∈ ℙ |
28 |
27
|
a1i |
⊢ ( ( 𝑁 ∈ Even ∧ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) → 2 ∈ ℙ ) |
29 |
|
oveq2 |
⊢ ( 𝑟 = 2 → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 𝑝 + 𝑞 ) + 2 ) ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑟 = 2 → ( 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑁 = ( ( 𝑝 + 𝑞 ) + 2 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑁 ∈ Even ∧ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) ∧ 𝑟 = 2 ) → ( 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑁 = ( ( 𝑝 + 𝑞 ) + 2 ) ) ) |
32 |
3
|
zcnd |
⊢ ( 𝑁 ∈ Even → 𝑁 ∈ ℂ ) |
33 |
|
2cnd |
⊢ ( 𝑁 ∈ Even → 2 ∈ ℂ ) |
34 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝑁 − 2 ) + 2 ) = 𝑁 ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℂ ∧ 2 ∈ ℂ ) → 𝑁 = ( ( 𝑁 − 2 ) + 2 ) ) |
36 |
32 33 35
|
syl2anc |
⊢ ( 𝑁 ∈ Even → 𝑁 = ( ( 𝑁 − 2 ) + 2 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑁 ∈ Even ∧ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) → 𝑁 = ( ( 𝑁 − 2 ) + 2 ) ) |
38 |
|
simpr |
⊢ ( ( 𝑁 ∈ Even ∧ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) |
39 |
38
|
oveq1d |
⊢ ( ( 𝑁 ∈ Even ∧ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) → ( ( 𝑁 − 2 ) + 2 ) = ( ( 𝑝 + 𝑞 ) + 2 ) ) |
40 |
37 39
|
eqtrd |
⊢ ( ( 𝑁 ∈ Even ∧ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) → 𝑁 = ( ( 𝑝 + 𝑞 ) + 2 ) ) |
41 |
28 31 40
|
rspcedvd |
⊢ ( ( 𝑁 ∈ Even ∧ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
42 |
41
|
ex |
⊢ ( 𝑁 ∈ Even → ( ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) → ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
43 |
42
|
reximdv |
⊢ ( 𝑁 ∈ Even → ( ∃ 𝑞 ∈ ℙ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) → ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
44 |
43
|
reximdv |
⊢ ( 𝑁 ∈ Even → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
45 |
44
|
imim2d |
⊢ ( 𝑁 ∈ Even → ( ( 2 < ( 𝑁 − 2 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑁 − 2 ) = ( 𝑝 + 𝑞 ) ) → ( 2 < ( 𝑁 − 2 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
46 |
26 45
|
syl9r |
⊢ ( 𝑁 ∈ Even → ( ( 𝑁 − 2 ) ∈ Even → ( ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 2 < ( 𝑁 − 2 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
47 |
21 46
|
mpd |
⊢ ( 𝑁 ∈ Even → ( ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 2 < ( 𝑁 − 2 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → ( ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 2 < ( 𝑁 − 2 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
49 |
18 48
|
mpid |
⊢ ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → ( ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
50 |
1 49
|
syl5com |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( ( 𝑁 ∈ Even ∧ 6 ≤ 𝑁 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑁 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |