Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
sgrimval
Metamath Proof Explorer
Description: The induced metric on a subgroup in terms of the induced metric on the
parent normed group. (Contributed by NM , 1-Feb-2008) (Revised by AV , 19-Oct-2021)
Ref
Expression
Hypotheses
sgrim.x
⊢ 𝑋 = ( 𝑇 ↾s 𝑈 )
sgrim.d
⊢ 𝐷 = ( dist ‘ 𝑇 )
sgrim.e
⊢ 𝐸 = ( dist ‘ 𝑋 )
sgrimval.t
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
sgrimval.n
⊢ 𝑁 = ( norm ‘ 𝐺 )
sgrimval.s
⊢ 𝑆 = ( SubGrp ‘ 𝑇 )
Assertion
sgrimval
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) ) → ( 𝐴 𝐸 𝐵 ) = ( 𝐴 𝐷 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
sgrim.x
⊢ 𝑋 = ( 𝑇 ↾s 𝑈 )
2
sgrim.d
⊢ 𝐷 = ( dist ‘ 𝑇 )
3
sgrim.e
⊢ 𝐸 = ( dist ‘ 𝑋 )
4
sgrimval.t
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
5
sgrimval.n
⊢ 𝑁 = ( norm ‘ 𝐺 )
6
sgrimval.s
⊢ 𝑆 = ( SubGrp ‘ 𝑇 )
7
1 2 3
sgrim
⊢ ( 𝑈 ∈ 𝑆 → 𝐸 = 𝐷 )
8
7
oveqd
⊢ ( 𝑈 ∈ 𝑆 → ( 𝐴 𝐸 𝐵 ) = ( 𝐴 𝐷 𝐵 ) )
9
8
ad2antlr
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) ) → ( 𝐴 𝐸 𝐵 ) = ( 𝐴 𝐷 𝐵 ) )