Database BASIC TOPOLOGY Metric spaces Normed algebraic structures sgrimval  
				
		 
		
			
		 
		Description:   The induced metric on a subgroup in terms of the induced metric on the
       parent normed group.  (Contributed by NM , 1-Feb-2008)   (Revised by AV , 19-Oct-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						sgrim.x ⊢  𝑋   =  ( 𝑇   ↾s   𝑈  )  
					
						sgrim.d ⊢  𝐷   =  ( dist ‘ 𝑇  )  
					
						sgrim.e ⊢  𝐸   =  ( dist ‘ 𝑋  )  
					
						sgrimval.t ⊢  𝑇   =  ( 𝐺   toNrmGrp  𝑁  )  
					
						sgrimval.n ⊢  𝑁   =  ( norm ‘ 𝐺  )  
					
						sgrimval.s ⊢  𝑆   =  ( SubGrp ‘ 𝑇  )  
				
					Assertion 
					sgrimval ⊢   ( ( ( 𝐺   ∈  NrmGrp  ∧  𝑈   ∈  𝑆  )  ∧  ( 𝐴   ∈  𝑈   ∧  𝐵   ∈  𝑈  ) )  →  ( 𝐴  𝐸  𝐵  )  =  ( 𝐴  𝐷  𝐵  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							sgrim.x ⊢  𝑋   =  ( 𝑇   ↾s   𝑈  )  
						
							2 
								
							 
							sgrim.d ⊢  𝐷   =  ( dist ‘ 𝑇  )  
						
							3 
								
							 
							sgrim.e ⊢  𝐸   =  ( dist ‘ 𝑋  )  
						
							4 
								
							 
							sgrimval.t ⊢  𝑇   =  ( 𝐺   toNrmGrp  𝑁  )  
						
							5 
								
							 
							sgrimval.n ⊢  𝑁   =  ( norm ‘ 𝐺  )  
						
							6 
								
							 
							sgrimval.s ⊢  𝑆   =  ( SubGrp ‘ 𝑇  )  
						
							7 
								1  2  3 
							 
							sgrim ⊢  ( 𝑈   ∈  𝑆   →  𝐸   =  𝐷  )  
						
							8 
								7 
							 
							oveqd ⊢  ( 𝑈   ∈  𝑆   →  ( 𝐴  𝐸  𝐵  )  =  ( 𝐴  𝐷  𝐵  ) )  
						
							9 
								8 
							 
							ad2antlr ⊢  ( ( ( 𝐺   ∈  NrmGrp  ∧  𝑈   ∈  𝑆  )  ∧  ( 𝐴   ∈  𝑈   ∧  𝐵   ∈  𝑈  ) )  →  ( 𝐴  𝐸  𝐵  )  =  ( 𝐴  𝐷  𝐵  ) )