Step |
Hyp |
Ref |
Expression |
1 |
|
mgm0 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Mgm ) |
2 |
|
rzal |
⊢ ( ( Base ‘ 𝑀 ) = ∅ → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
6 |
4 5
|
issgrp |
⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) |
7 |
1 3 6
|
sylanbrc |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Smgrp ) |