Metamath Proof Explorer


Theorem sgrp0

Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion sgrp0 ( ( 𝑀𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Smgrp )

Proof

Step Hyp Ref Expression
1 mgm0 ( ( 𝑀𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Mgm )
2 rzal ( ( Base ‘ 𝑀 ) = ∅ → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) )
3 2 adantl ( ( 𝑀𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) )
4 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
5 eqid ( +g𝑀 ) = ( +g𝑀 )
6 4 5 issgrp ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) ) )
7 1 3 6 sylanbrc ( ( 𝑀𝑉 ∧ ( Base ‘ 𝑀 ) = ∅ ) → 𝑀 ∈ Smgrp )