Step |
Hyp |
Ref |
Expression |
1 |
|
sgrpass.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
sgrpass.o |
⊢ ⚬ = ( +g ‘ 𝐺 ) |
3 |
1 2
|
issgrp |
⊢ ( 𝐺 ∈ Smgrp ↔ ( 𝐺 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⚬ 𝑦 ) = ( 𝑋 ⚬ 𝑦 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⚬ 𝑦 ) = ( 𝑋 ⚬ 𝑌 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ⚬ 𝑧 ) = ( 𝑌 ⚬ 𝑧 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) |
12 |
9 11
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑌 ⚬ 𝑧 ) = ( 𝑌 ⚬ 𝑍 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑧 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑧 ) ) ↔ ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
17 |
7 12 16
|
rspc3v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
18 |
17
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
19 |
3 18
|
simplbiim |
⊢ ( 𝐺 ∈ Smgrp → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) ) |
20 |
19
|
imp |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ⚬ 𝑌 ) ⚬ 𝑍 ) = ( 𝑋 ⚬ ( 𝑌 ⚬ 𝑍 ) ) ) |