Step |
Hyp |
Ref |
Expression |
1 |
|
sgrpidmnd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
sgrpidmnd.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
1 3 2
|
grpidval |
⊢ 0 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) |
5 |
4
|
eqeq2i |
⊢ ( 𝑒 = 0 ↔ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) |
6 |
|
eleq1w |
⊢ ( 𝑦 = 𝑒 → ( 𝑦 ∈ 𝐵 ↔ 𝑒 ∈ 𝐵 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑒 → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑦 = 𝑒 → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ↔ ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) ) |
9 |
8
|
ovanraleqv |
⊢ ( 𝑦 = 𝑒 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
10 |
6 9
|
anbi12d |
⊢ ( 𝑦 = 𝑒 → ( ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ↔ ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) ) |
11 |
10
|
iotan0 |
⊢ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 ≠ ∅ ∧ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) → ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
12 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
13 |
11 12
|
simpl2im |
⊢ ( ( 𝑒 ∈ 𝐵 ∧ 𝑒 ≠ ∅ ∧ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
14 |
13
|
3expb |
⊢ ( ( 𝑒 ∈ 𝐵 ∧ ( 𝑒 ≠ ∅ ∧ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
15 |
14
|
expcom |
⊢ ( ( 𝑒 ≠ ∅ ∧ 𝑒 = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) ) ) ) → ( 𝑒 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) ) |
16 |
5 15
|
sylan2b |
⊢ ( ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ( 𝑒 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) ) |
17 |
16
|
impcom |
⊢ ( ( 𝑒 ∈ 𝐵 ∧ ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
18 |
17
|
ralrimiv |
⊢ ( ( 𝑒 ∈ 𝐵 ∧ ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) |
19 |
18
|
ex |
⊢ ( 𝑒 ∈ 𝐵 → ( ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
20 |
19
|
reximia |
⊢ ( ∃ 𝑒 ∈ 𝐵 ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) |
21 |
20
|
anim2i |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
22 |
1 3
|
ismnddef |
⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 ) = 𝑥 ) ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ 𝐵 ( 𝑒 ≠ ∅ ∧ 𝑒 = 0 ) ) → 𝐺 ∈ Mnd ) |