Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | sgrpmgm | ⊢ ( 𝑀 ∈ Smgrp → 𝑀 ∈ Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
2 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
3 | 1 2 | issgrp | ⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝑀 ∈ Smgrp → 𝑀 ∈ Mgm ) |