Metamath Proof Explorer


Theorem sgrpmgm

Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)

Ref Expression
Assertion sgrpmgm ( 𝑀 ∈ Smgrp → 𝑀 ∈ Mgm )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
2 eqid ( +g𝑀 ) = ( +g𝑀 )
3 1 2 issgrp ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ ( Base ‘ 𝑀 ) ∀ 𝑧 ∈ ( Base ‘ 𝑀 ) ( ( 𝑥 ( +g𝑀 ) 𝑦 ) ( +g𝑀 ) 𝑧 ) = ( 𝑥 ( +g𝑀 ) ( 𝑦 ( +g𝑀 ) 𝑧 ) ) ) )
4 3 simplbi ( 𝑀 ∈ Smgrp → 𝑀 ∈ Mgm )