Description: A 1-dimensional subspace is less than or equal to any subspace containing its generating vector. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sh1dle | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ℋ ) | |
2 | spansn | ⊢ ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | |
3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( span ‘ { 𝐵 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
4 | spansnss | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) | |
5 | 3 4 | eqsstrrd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ⊆ 𝐴 ) |