Metamath Proof Explorer


Theorem shatomici

Description: The lattice of Hilbert subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypothesis shatomic.1 𝐴S
Assertion shatomici ( 𝐴 ≠ 0 → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 shatomic.1 𝐴S
2 1 shne0i ( 𝐴 ≠ 0 ↔ ∃ 𝑦𝐴 𝑦 ≠ 0 )
3 1 sheli ( 𝑦𝐴𝑦 ∈ ℋ )
4 h1da ( ( 𝑦 ∈ ℋ ∧ 𝑦 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ∈ HAtoms )
5 3 4 sylan ( ( 𝑦𝐴𝑦 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ∈ HAtoms )
6 sh1dle ( ( 𝐴S𝑦𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 )
7 1 6 mpan ( 𝑦𝐴 → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 )
8 7 adantr ( ( 𝑦𝐴𝑦 ≠ 0 ) → ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 )
9 sseq1 ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) → ( 𝑥𝐴 ↔ ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 ) )
10 9 rspcev ( ( ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ∈ HAtoms ∧ ( ⊥ ‘ ( ⊥ ‘ { 𝑦 } ) ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 )
11 5 8 10 syl2anc ( ( 𝑦𝐴𝑦 ≠ 0 ) → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 )
12 11 rexlimiva ( ∃ 𝑦𝐴 𝑦 ≠ 0 → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 )
13 2 12 sylbi ( 𝐴 ≠ 0 → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 )