Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shex | ⊢ Sℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | 1 | pwex | ⊢ 𝒫 ℋ ∈ V |
| 3 | shss | ⊢ ( 𝑥 ∈ Sℋ → 𝑥 ⊆ ℋ ) | |
| 4 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝑥 ∈ Sℋ → 𝑥 ∈ 𝒫 ℋ ) |
| 6 | 5 | ssriv | ⊢ Sℋ ⊆ 𝒫 ℋ |
| 7 | 2 6 | ssexi | ⊢ Sℋ ∈ V |