Metamath Proof Explorer


Theorem shex

Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shex S ∈ V

Proof

Step Hyp Ref Expression
1 ax-hilex ℋ ∈ V
2 1 pwex 𝒫 ℋ ∈ V
3 shss ( 𝑥S𝑥 ⊆ ℋ )
4 velpw ( 𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ )
5 3 4 sylibr ( 𝑥S𝑥 ∈ 𝒫 ℋ )
6 5 ssriv S ⊆ 𝒫 ℋ
7 2 6 ssexi S ∈ V