| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolshft.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
ovolshft.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 3 |
|
ovolshft.3 |
⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) |
| 4 |
1
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
| 5 |
4
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 6 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 7 |
2
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 8 |
|
subneg |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝑦 − - 𝐶 ) = ( 𝑦 + 𝐶 ) ) |
| 9 |
6 7 8
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 − - 𝐶 ) = ( 𝑦 + 𝐶 ) ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) |
| 11 |
9 10
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 − - 𝐶 ) ∈ 𝐵 ↔ ( 𝑦 + 𝐶 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) ) |
| 12 |
|
id |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ ) |
| 13 |
|
readdcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑦 + 𝐶 ) ∈ ℝ ) |
| 14 |
12 2 13
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 + 𝐶 ) ∈ ℝ ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 𝐶 ) → ( 𝑥 − 𝐶 ) = ( ( 𝑦 + 𝐶 ) − 𝐶 ) ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 𝐶 ) → ( ( 𝑥 − 𝐶 ) ∈ 𝐴 ↔ ( ( 𝑦 + 𝐶 ) − 𝐶 ) ∈ 𝐴 ) ) |
| 17 |
16
|
elrab3 |
⊢ ( ( 𝑦 + 𝐶 ) ∈ ℝ → ( ( 𝑦 + 𝐶 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ↔ ( ( 𝑦 + 𝐶 ) − 𝐶 ) ∈ 𝐴 ) ) |
| 18 |
14 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 𝐶 ) ∈ { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ↔ ( ( 𝑦 + 𝐶 ) − 𝐶 ) ∈ 𝐴 ) ) |
| 19 |
|
pncan |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝑦 + 𝐶 ) − 𝐶 ) = 𝑦 ) |
| 20 |
6 7 19
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 𝐶 ) − 𝐶 ) = 𝑦 ) |
| 21 |
20
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑦 + 𝐶 ) − 𝐶 ) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 22 |
11 18 21
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 − - 𝐶 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐴 ) ) |
| 23 |
22
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ∧ ( 𝑦 − - 𝐶 ) ∈ 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 24 |
5 23
|
bitr4d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ ( 𝑦 − - 𝐶 ) ∈ 𝐵 ) ) ) |
| 25 |
24
|
eqabdv |
⊢ ( 𝜑 → 𝐴 = { 𝑦 ∣ ( 𝑦 ∈ ℝ ∧ ( 𝑦 − - 𝐶 ) ∈ 𝐵 ) } ) |
| 26 |
|
df-rab |
⊢ { 𝑦 ∈ ℝ ∣ ( 𝑦 − - 𝐶 ) ∈ 𝐵 } = { 𝑦 ∣ ( 𝑦 ∈ ℝ ∧ ( 𝑦 − - 𝐶 ) ∈ 𝐵 ) } |
| 27 |
25 26
|
eqtr4di |
⊢ ( 𝜑 → 𝐴 = { 𝑦 ∈ ℝ ∣ ( 𝑦 − - 𝐶 ) ∈ 𝐵 } ) |