Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
3 |
1
|
2shfti |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) = ( 𝐹 shift ( 𝐴 + - 𝐴 ) ) ) |
4 |
2 3
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) = ( 𝐹 shift ( 𝐴 + - 𝐴 ) ) ) |
5 |
|
negid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) |
6 |
5
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift ( 𝐴 + - 𝐴 ) ) = ( 𝐹 shift 0 ) ) |
7 |
4 6
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) = ( 𝐹 shift 0 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) ‘ 𝐵 ) = ( ( 𝐹 shift 0 ) ‘ 𝐵 ) ) |
9 |
1
|
shftidt |
⊢ ( 𝐵 ∈ ℂ → ( ( 𝐹 shift 0 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
10 |
8 9
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |