| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 3 | 1 | 2shfti | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝐴  ∈  ℂ )  →  ( ( 𝐹  shift  𝐴 )  shift  - 𝐴 )  =  ( 𝐹  shift  ( 𝐴  +  - 𝐴 ) ) ) | 
						
							| 4 | 2 3 | mpdan | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐹  shift  𝐴 )  shift  - 𝐴 )  =  ( 𝐹  shift  ( 𝐴  +  - 𝐴 ) ) ) | 
						
							| 5 |  | negid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  +  - 𝐴 )  =  0 ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐹  shift  ( 𝐴  +  - 𝐴 ) )  =  ( 𝐹  shift  0 ) ) | 
						
							| 7 | 4 6 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐹  shift  𝐴 )  shift  - 𝐴 )  =  ( 𝐹  shift  0 ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( 𝐹  shift  𝐴 )  shift  - 𝐴 ) ‘ 𝐵 )  =  ( ( 𝐹  shift  0 ) ‘ 𝐵 ) ) | 
						
							| 9 | 1 | shftidt | ⊢ ( 𝐵  ∈  ℂ  →  ( ( 𝐹  shift  0 ) ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 10 | 8 9 | sylan9eq | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( 𝐹  shift  𝐴 )  shift  - 𝐴 ) ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) |