Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
|
negneg |
⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - - 𝐴 = 𝐴 ) |
4 |
3
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift - 𝐴 ) shift - - 𝐴 ) = ( ( 𝐹 shift - 𝐴 ) shift 𝐴 ) ) |
5 |
4
|
fveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift - - 𝐴 ) ‘ 𝐵 ) = ( ( ( 𝐹 shift - 𝐴 ) shift 𝐴 ) ‘ 𝐵 ) ) |
6 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
7 |
1
|
shftcan1 |
⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift - - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift - - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
9 |
5 8
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift - 𝐴 ) shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |