| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | negneg | ⊢ ( 𝐴  ∈  ℂ  →  - - 𝐴  =  𝐴 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  - - 𝐴  =  𝐴 ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  - 𝐴 )  shift  - - 𝐴 )  =  ( ( 𝐹  shift  - 𝐴 )  shift  𝐴 ) ) | 
						
							| 5 | 4 | fveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( 𝐹  shift  - 𝐴 )  shift  - - 𝐴 ) ‘ 𝐵 )  =  ( ( ( 𝐹  shift  - 𝐴 )  shift  𝐴 ) ‘ 𝐵 ) ) | 
						
							| 6 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 7 | 1 | shftcan1 | ⊢ ( ( - 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( 𝐹  shift  - 𝐴 )  shift  - - 𝐴 ) ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( 𝐹  shift  - 𝐴 )  shift  - - 𝐴 ) ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 9 | 5 8 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( ( 𝐹  shift  - 𝐴 )  shift  𝐴 ) ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) |