| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 | 1 | shftfval | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐹  shift  𝐴 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 3 | 2 | dmeqd | ⊢ ( 𝐴  ∈  ℂ  →  dom  ( 𝐹  shift  𝐴 )  =  dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 4 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 )  ↔  ( 𝑥  ∈  ℂ  ∧  ∃ 𝑦 ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) ) | 
						
							| 5 |  | ovex | ⊢ ( 𝑥  −  𝐴 )  ∈  V | 
						
							| 6 | 5 | eldm | ⊢ ( ( 𝑥  −  𝐴 )  ∈  dom  𝐹  ↔  ∃ 𝑦 ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) | 
						
							| 7 | 6 | anbi2i | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 )  ↔  ( 𝑥  ∈  ℂ  ∧  ∃ 𝑦 ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) ) | 
						
							| 8 | 4 7 | bitr4i | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 ) ) | 
						
							| 9 | 8 | abbii | ⊢ { 𝑥  ∣  ∃ 𝑦 ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  =  { 𝑥  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 ) } | 
						
							| 10 |  | dmopab | ⊢ dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  =  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } | 
						
							| 11 |  | df-rab | ⊢ { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 }  =  { 𝑥  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 ) } | 
						
							| 12 | 9 10 11 | 3eqtr4i | ⊢ dom  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  =  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 } | 
						
							| 13 | 3 12 | eqtrdi | ⊢ ( 𝐴  ∈  ℂ  →  dom  ( 𝐹  shift  𝐴 )  =  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 } ) |