Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
1
|
shftfval |
⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
3 |
2
|
dmeqd |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝐹 shift 𝐴 ) = dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
4 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ) |
5 |
|
ovex |
⊢ ( 𝑥 − 𝐴 ) ∈ V |
6 |
5
|
eldm |
⊢ ( ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ↔ ∃ 𝑦 ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) |
7 |
6
|
anbi2i |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) ↔ ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ) |
8 |
4 7
|
bitr4i |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) ) |
9 |
8
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) } |
10 |
|
dmopab |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } |
11 |
|
df-rab |
⊢ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) } |
12 |
9 10 11
|
3eqtr4i |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } |
13 |
3 12
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } ) |