Metamath Proof Explorer


Theorem shftf

Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 𝐹 ∈ V
Assertion shftf ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) : { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } ⟶ 𝐶 )

Proof

Step Hyp Ref Expression
1 shftfval.1 𝐹 ∈ V
2 ffn ( 𝐹 : 𝐵𝐶𝐹 Fn 𝐵 )
3 1 shftfn ( ( 𝐹 Fn 𝐵𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } )
4 2 3 sylan ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } )
5 oveq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴 ) = ( 𝑦𝐴 ) )
6 5 eleq1d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴 ) ∈ 𝐵 ↔ ( 𝑦𝐴 ) ∈ 𝐵 ) )
7 6 elrab ( 𝑦 ∈ { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } ↔ ( 𝑦 ∈ ℂ ∧ ( 𝑦𝐴 ) ∈ 𝐵 ) )
8 simpr ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) → 𝐴 ∈ ℂ )
9 simpl ( ( 𝑦 ∈ ℂ ∧ ( 𝑦𝐴 ) ∈ 𝐵 ) → 𝑦 ∈ ℂ )
10 1 shftval ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦𝐴 ) ) )
11 8 9 10 syl2an ( ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑦𝐴 ) ∈ 𝐵 ) ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑦𝐴 ) ) )
12 simpl ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) → 𝐹 : 𝐵𝐶 )
13 simpr ( ( 𝑦 ∈ ℂ ∧ ( 𝑦𝐴 ) ∈ 𝐵 ) → ( 𝑦𝐴 ) ∈ 𝐵 )
14 ffvelrn ( ( 𝐹 : 𝐵𝐶 ∧ ( 𝑦𝐴 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑦𝐴 ) ) ∈ 𝐶 )
15 12 13 14 syl2an ( ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑦𝐴 ) ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦𝐴 ) ) ∈ 𝐶 )
16 11 15 eqeltrd ( ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑦𝐴 ) ∈ 𝐵 ) ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) ∈ 𝐶 )
17 7 16 sylan2b ( ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) ∧ 𝑦 ∈ { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) ∈ 𝐶 )
18 17 ralrimiva ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) → ∀ 𝑦 ∈ { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) ∈ 𝐶 )
19 ffnfv ( ( 𝐹 shift 𝐴 ) : { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } ⟶ 𝐶 ↔ ( ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } ( ( 𝐹 shift 𝐴 ) ‘ 𝑦 ) ∈ 𝐶 ) )
20 4 18 19 sylanbrc ( ( 𝐹 : 𝐵𝐶𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) : { 𝑥 ∈ ℂ ∣ ( 𝑥𝐴 ) ∈ 𝐵 } ⟶ 𝐶 )