Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
|
relopabv |
⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } |
3 |
2
|
a1i |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
4 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐵 → Fun 𝐹 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → Fun 𝐹 ) |
6 |
|
funmo |
⊢ ( Fun 𝐹 → ∃* 𝑤 ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) |
7 |
|
vex |
⊢ 𝑧 ∈ V |
8 |
|
vex |
⊢ 𝑤 ∈ V |
9 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 − 𝐴 ) = ( 𝑧 − 𝐴 ) ) |
11 |
10
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 − 𝐴 ) 𝐹 𝑦 ↔ ( 𝑧 − 𝐴 ) 𝐹 𝑦 ) ) |
12 |
9 11
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) 𝐹 𝑦 ) ) ) |
13 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 − 𝐴 ) 𝐹 𝑦 ↔ ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) 𝐹 𝑦 ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) ) ) |
15 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } |
16 |
7 8 12 14 15
|
brab |
⊢ ( 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ↔ ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) ) |
17 |
16
|
simprbi |
⊢ ( 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 → ( 𝑧 − 𝐴 ) 𝐹 𝑤 ) |
18 |
17
|
moimi |
⊢ ( ∃* 𝑤 ( 𝑧 − 𝐴 ) 𝐹 𝑤 → ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) |
19 |
6 18
|
syl |
⊢ ( Fun 𝐹 → ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) |
20 |
19
|
alrimiv |
⊢ ( Fun 𝐹 → ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) |
21 |
5 20
|
syl |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) |
22 |
|
dffun6 |
⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ↔ ( Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∧ ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } 𝑤 ) ) |
23 |
3 21 22
|
sylanbrc |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
24 |
1
|
shftfval |
⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
25 |
24
|
adantl |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
26 |
25
|
funeqd |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ( Fun ( 𝐹 shift 𝐴 ) ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) ) |
27 |
23 26
|
mpbird |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → Fun ( 𝐹 shift 𝐴 ) ) |
28 |
1
|
shftdm |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } ) |
29 |
|
fndm |
⊢ ( 𝐹 Fn 𝐵 → dom 𝐹 = 𝐵 ) |
30 |
29
|
eleq2d |
⊢ ( 𝐹 Fn 𝐵 → ( ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ↔ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ) |
31 |
30
|
rabbidv |
⊢ ( 𝐹 Fn 𝐵 → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ dom 𝐹 } = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |
32 |
28 31
|
sylan9eqr |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |
33 |
|
df-fn |
⊢ ( ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ↔ ( Fun ( 𝐹 shift 𝐴 ) ∧ dom ( 𝐹 shift 𝐴 ) = { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) ) |
34 |
27 32 33
|
sylanbrc |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 shift 𝐴 ) Fn { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } ) |