| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | relopabv | ⊢ Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 4 |  | fnfun | ⊢ ( 𝐹  Fn  𝐵  →  Fun  𝐹 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  Fun  𝐹 ) | 
						
							| 6 |  | funmo | ⊢ ( Fun  𝐹  →  ∃* 𝑤 ( 𝑧  −  𝐴 ) 𝐹 𝑤 ) | 
						
							| 7 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 8 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 9 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  ℂ  ↔  𝑧  ∈  ℂ ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  −  𝐴 )  =  ( 𝑧  −  𝐴 ) ) | 
						
							| 11 | 10 | breq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  −  𝐴 ) 𝐹 𝑦  ↔  ( 𝑧  −  𝐴 ) 𝐹 𝑦 ) ) | 
						
							| 12 | 9 11 | anbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 )  ↔  ( 𝑧  ∈  ℂ  ∧  ( 𝑧  −  𝐴 ) 𝐹 𝑦 ) ) ) | 
						
							| 13 |  | breq2 | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝑧  −  𝐴 ) 𝐹 𝑦  ↔  ( 𝑧  −  𝐴 ) 𝐹 𝑤 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝑧  ∈  ℂ  ∧  ( 𝑧  −  𝐴 ) 𝐹 𝑦 )  ↔  ( 𝑧  ∈  ℂ  ∧  ( 𝑧  −  𝐴 ) 𝐹 𝑤 ) ) ) | 
						
							| 15 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } | 
						
							| 16 | 7 8 12 14 15 | brab | ⊢ ( 𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } 𝑤  ↔  ( 𝑧  ∈  ℂ  ∧  ( 𝑧  −  𝐴 ) 𝐹 𝑤 ) ) | 
						
							| 17 | 16 | simprbi | ⊢ ( 𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } 𝑤  →  ( 𝑧  −  𝐴 ) 𝐹 𝑤 ) | 
						
							| 18 | 17 | moimi | ⊢ ( ∃* 𝑤 ( 𝑧  −  𝐴 ) 𝐹 𝑤  →  ∃* 𝑤 𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } 𝑤 ) | 
						
							| 19 | 6 18 | syl | ⊢ ( Fun  𝐹  →  ∃* 𝑤 𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } 𝑤 ) | 
						
							| 20 | 19 | alrimiv | ⊢ ( Fun  𝐹  →  ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } 𝑤 ) | 
						
							| 21 | 5 20 | syl | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } 𝑤 ) | 
						
							| 22 |  | dffun6 | ⊢ ( Fun  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ↔  ( Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ∧  ∀ 𝑧 ∃* 𝑤 𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } 𝑤 ) ) | 
						
							| 23 | 3 21 22 | sylanbrc | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  Fun  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 24 | 1 | shftfval | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐹  shift  𝐴 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  ( 𝐹  shift  𝐴 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 26 | 25 | funeqd | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  ( Fun  ( 𝐹  shift  𝐴 )  ↔  Fun  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) ) | 
						
							| 27 | 23 26 | mpbird | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  Fun  ( 𝐹  shift  𝐴 ) ) | 
						
							| 28 | 1 | shftdm | ⊢ ( 𝐴  ∈  ℂ  →  dom  ( 𝐹  shift  𝐴 )  =  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 } ) | 
						
							| 29 |  | fndm | ⊢ ( 𝐹  Fn  𝐵  →  dom  𝐹  =  𝐵 ) | 
						
							| 30 | 29 | eleq2d | ⊢ ( 𝐹  Fn  𝐵  →  ( ( 𝑥  −  𝐴 )  ∈  dom  𝐹  ↔  ( 𝑥  −  𝐴 )  ∈  𝐵 ) ) | 
						
							| 31 | 30 | rabbidv | ⊢ ( 𝐹  Fn  𝐵  →  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 }  =  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  𝐵 } ) | 
						
							| 32 | 28 31 | sylan9eqr | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  dom  ( 𝐹  shift  𝐴 )  =  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  𝐵 } ) | 
						
							| 33 |  | df-fn | ⊢ ( ( 𝐹  shift  𝐴 )  Fn  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  𝐵 }  ↔  ( Fun  ( 𝐹  shift  𝐴 )  ∧  dom  ( 𝐹  shift  𝐴 )  =  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  𝐵 } ) ) | 
						
							| 34 | 27 32 33 | sylanbrc | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ∈  ℂ )  →  ( 𝐹  shift  𝐴 )  Fn  { 𝑥  ∈  ℂ  ∣  ( 𝑥  −  𝐴 )  ∈  𝐵 } ) |