| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | ovex | ⊢ ( 𝑥  −  𝐴 )  ∈  V | 
						
							| 3 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 4 | 2 3 | breldm | ⊢ ( ( 𝑥  −  𝐴 ) 𝐹 𝑦  →  ( 𝑥  −  𝐴 )  ∈  dom  𝐹 ) | 
						
							| 5 |  | npcan | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝑥  −  𝐴 )  +  𝐴 )  =  𝑥 ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  𝑥  =  ( ( 𝑥  −  𝐴 )  +  𝐴 ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  𝑥  =  ( ( 𝑥  −  𝐴 )  +  𝐴 ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑤  =  ( 𝑥  −  𝐴 )  →  ( 𝑤  +  𝐴 )  =  ( ( 𝑥  −  𝐴 )  +  𝐴 ) ) | 
						
							| 9 | 8 | rspceeqv | ⊢ ( ( ( 𝑥  −  𝐴 )  ∈  dom  𝐹  ∧  𝑥  =  ( ( 𝑥  −  𝐴 )  +  𝐴 ) )  →  ∃ 𝑤  ∈  dom  𝐹 𝑥  =  ( 𝑤  +  𝐴 ) ) | 
						
							| 10 | 4 7 9 | syl2anr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 )  →  ∃ 𝑤  ∈  dom  𝐹 𝑥  =  ( 𝑤  +  𝐴 ) ) | 
						
							| 11 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 12 |  | eqeq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  =  ( 𝑤  +  𝐴 )  ↔  𝑥  =  ( 𝑤  +  𝐴 ) ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 )  ↔  ∃ 𝑤  ∈  dom  𝐹 𝑥  =  ( 𝑤  +  𝐴 ) ) ) | 
						
							| 14 | 11 13 | elab | ⊢ ( 𝑥  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ↔  ∃ 𝑤  ∈  dom  𝐹 𝑥  =  ( 𝑤  +  𝐴 ) ) | 
						
							| 15 | 10 14 | sylibr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 )  →  𝑥  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) } ) | 
						
							| 16 | 2 3 | brelrn | ⊢ ( ( 𝑥  −  𝐴 ) 𝐹 𝑦  →  𝑦  ∈  ran  𝐹 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 )  →  𝑦  ∈  ran  𝐹 ) | 
						
							| 18 | 15 17 | jca | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑥  ∈  ℂ )  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 )  →  ( 𝑥  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ∧  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 19 | 18 | expl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 )  →  ( 𝑥  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ∧  𝑦  ∈  ran  𝐹 ) ) ) | 
						
							| 20 | 19 | ssopab2dv | ⊢ ( 𝐴  ∈  ℂ  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ⊆  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ∧  𝑦  ∈  ran  𝐹 ) } ) | 
						
							| 21 |  | df-xp | ⊢ ( { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ×  ran  𝐹 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ∧  𝑦  ∈  ran  𝐹 ) } | 
						
							| 22 | 20 21 | sseqtrrdi | ⊢ ( 𝐴  ∈  ℂ  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ⊆  ( { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ×  ran  𝐹 ) ) | 
						
							| 23 | 1 | dmex | ⊢ dom  𝐹  ∈  V | 
						
							| 24 | 23 | abrexex | ⊢ { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ∈  V | 
						
							| 25 | 1 | rnex | ⊢ ran  𝐹  ∈  V | 
						
							| 26 | 24 25 | xpex | ⊢ ( { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ×  ran  𝐹 )  ∈  V | 
						
							| 27 |  | ssexg | ⊢ ( ( { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ⊆  ( { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ×  ran  𝐹 )  ∧  ( { 𝑧  ∣  ∃ 𝑤  ∈  dom  𝐹 𝑧  =  ( 𝑤  +  𝐴 ) }  ×  ran  𝐹 )  ∈  V )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ∈  V ) | 
						
							| 28 | 22 26 27 | sylancl | ⊢ ( 𝐴  ∈  ℂ  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ∈  V ) | 
						
							| 29 |  | breq | ⊢ ( 𝑧  =  𝐹  →  ( ( 𝑥  −  𝑤 ) 𝑧 𝑦  ↔  ( 𝑥  −  𝑤 ) 𝐹 𝑦 ) ) | 
						
							| 30 | 29 | anbi2d | ⊢ ( 𝑧  =  𝐹  →  ( ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝑤 ) 𝑧 𝑦 )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝑤 ) 𝐹 𝑦 ) ) ) | 
						
							| 31 | 30 | opabbidv | ⊢ ( 𝑧  =  𝐹  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝑤 ) 𝑧 𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝑤 ) 𝐹 𝑦 ) } ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑤  =  𝐴  →  ( 𝑥  −  𝑤 )  =  ( 𝑥  −  𝐴 ) ) | 
						
							| 33 | 32 | breq1d | ⊢ ( 𝑤  =  𝐴  →  ( ( 𝑥  −  𝑤 ) 𝐹 𝑦  ↔  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) ) | 
						
							| 34 | 33 | anbi2d | ⊢ ( 𝑤  =  𝐴  →  ( ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝑤 ) 𝐹 𝑦 )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) ) ) | 
						
							| 35 | 34 | opabbidv | ⊢ ( 𝑤  =  𝐴  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝑤 ) 𝐹 𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 36 |  | df-shft | ⊢  shift   =  ( 𝑧  ∈  V ,  𝑤  ∈  ℂ  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝑤 ) 𝑧 𝑦 ) } ) | 
						
							| 37 | 31 35 36 | ovmpog | ⊢ ( ( 𝐹  ∈  V  ∧  𝐴  ∈  ℂ  ∧  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ∈  V )  →  ( 𝐹  shift  𝐴 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 38 | 1 37 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) }  ∈  V )  →  ( 𝐹  shift  𝐴 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) | 
						
							| 39 | 28 38 | mpdan | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐹  shift  𝐴 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  −  𝐴 ) 𝐹 𝑦 ) } ) |