Metamath Proof Explorer


Theorem shftidt

Description: Identity law for the shift operation. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 𝐹 ∈ V
Assertion shftidt ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 shftfval.1 𝐹 ∈ V
2 1 shftidt2 ( 𝐹 shift 0 ) = ( 𝐹 ↾ ℂ )
3 2 fveq1i ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( ( 𝐹 ↾ ℂ ) ‘ 𝐴 )
4 fvres ( 𝐴 ∈ ℂ → ( ( 𝐹 ↾ ℂ ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )
5 3 4 eqtrid ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )