Description: Identity law for the shift operation. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
Assertion | shftidt | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
2 | 1 | shftidt2 | ⊢ ( 𝐹 shift 0 ) = ( 𝐹 ↾ ℂ ) |
3 | 2 | fveq1i | ⊢ ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( ( 𝐹 ↾ ℂ ) ‘ 𝐴 ) |
4 | fvres | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 ↾ ℂ ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) | |
5 | 3 4 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |