Description: Identity law for the shift operation. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftidt | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | 1 | shftidt2 | ⊢ ( 𝐹 shift 0 ) = ( 𝐹 ↾ ℂ ) | 
| 3 | 2 | fveq1i | ⊢ ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( ( 𝐹 ↾ ℂ ) ‘ 𝐴 ) | 
| 4 | fvres | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 ↾ ℂ ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 5 | 3 4 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 0 ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |