Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
|
subid1 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 ) |
3 |
2
|
breq1d |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 − 0 ) 𝐹 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
4 |
3
|
pm5.32i |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 0 ) 𝐹 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 𝐹 𝑦 ) ) |
5 |
4
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 0 ) 𝐹 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑥 𝐹 𝑦 ) } |
6 |
|
0cn |
⊢ 0 ∈ ℂ |
7 |
1
|
shftfval |
⊢ ( 0 ∈ ℂ → ( 𝐹 shift 0 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 0 ) 𝐹 𝑦 ) } ) |
8 |
6 7
|
ax-mp |
⊢ ( 𝐹 shift 0 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 0 ) 𝐹 𝑦 ) } |
9 |
|
dfres2 |
⊢ ( 𝐹 ↾ ℂ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑥 𝐹 𝑦 ) } |
10 |
5 8 9
|
3eqtr4i |
⊢ ( 𝐹 shift 0 ) = ( 𝐹 ↾ ℂ ) |