Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
⊢ { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } = { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) } |
2 |
|
npcan |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
4 |
3
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝐴 ) → ( 𝑦 + 𝐴 ) = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) |
6 |
5
|
rspceeqv |
⊢ ( ( ( 𝑥 − 𝐴 ) ∈ 𝐵 ∧ 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) |
7 |
6
|
expcom |
⊢ ( 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) → ( ( 𝑥 − 𝐴 ) ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
8 |
4 7
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑥 − 𝐴 ) ∈ 𝐵 → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
9 |
8
|
expimpd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
11 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℂ ) |
12 |
|
addcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑦 + 𝐴 ) ∈ ℂ ) |
13 |
11 12
|
sylan |
⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → ( 𝑦 + 𝐴 ) ∈ ℂ ) |
14 |
|
pncan |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 𝐴 ) − 𝐴 ) = 𝑦 ) |
15 |
11 14
|
sylan |
⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 𝐴 ) − 𝐴 ) = 𝑦 ) |
16 |
|
simplr |
⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → 𝑦 ∈ 𝐵 ) |
17 |
15 16
|
eqeltrd |
⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) |
18 |
13 17
|
jca |
⊢ ( ( ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 𝐴 ) ∈ ℂ ∧ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) |
19 |
18
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ⊆ ℂ ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑦 + 𝐴 ) ∈ ℂ ∧ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) |
20 |
19
|
anassrs |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 + 𝐴 ) ∈ ℂ ∧ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) |
21 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 + 𝐴 ) → ( 𝑥 ∈ ℂ ↔ ( 𝑦 + 𝐴 ) ∈ ℂ ) ) |
22 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 𝐴 ) → ( 𝑥 − 𝐴 ) = ( ( 𝑦 + 𝐴 ) − 𝐴 ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 𝐴 ) → ( ( 𝑥 − 𝐴 ) ∈ 𝐵 ↔ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) |
24 |
21 23
|
anbi12d |
⊢ ( 𝑥 = ( 𝑦 + 𝐴 ) → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ↔ ( ( 𝑦 + 𝐴 ) ∈ ℂ ∧ ( ( 𝑦 + 𝐴 ) − 𝐴 ) ∈ 𝐵 ) ) ) |
25 |
20 24
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = ( 𝑦 + 𝐴 ) → ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ) ) |
26 |
25
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) → ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ) ) |
27 |
10 26
|
impbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) ) ) |
28 |
27
|
abbidv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → { 𝑥 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) ∈ 𝐵 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) } ) |
29 |
1 28
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ ) → { 𝑥 ∈ ℂ ∣ ( 𝑥 − 𝐴 ) ∈ 𝐵 } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 + 𝐴 ) } ) |