Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
1
|
shftfib |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) = ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) |
3 |
2
|
eleq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) ↔ 𝑥 ∈ ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) ) |
4 |
3
|
iotabidv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℩ 𝑥 𝑥 ∈ ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) ) |
5 |
|
dffv3 |
⊢ ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( ℩ 𝑥 𝑥 ∈ ( ( 𝐹 shift 𝐴 ) “ { 𝐵 } ) ) |
6 |
|
dffv3 |
⊢ ( 𝐹 ‘ ( 𝐵 − 𝐴 ) ) = ( ℩ 𝑥 𝑥 ∈ ( 𝐹 “ { ( 𝐵 − 𝐴 ) } ) ) |
7 |
4 5 6
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ ( 𝐵 − 𝐴 ) ) ) |