| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 | 1 | shftfib | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  𝐴 )  “  { 𝐵 } )  =  ( 𝐹  “  { ( 𝐵  −  𝐴 ) } ) ) | 
						
							| 3 | 2 | eleq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝑥  ∈  ( ( 𝐹  shift  𝐴 )  “  { 𝐵 } )  ↔  𝑥  ∈  ( 𝐹  “  { ( 𝐵  −  𝐴 ) } ) ) ) | 
						
							| 4 | 3 | iotabidv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ℩ 𝑥 𝑥  ∈  ( ( 𝐹  shift  𝐴 )  “  { 𝐵 } ) )  =  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  “  { ( 𝐵  −  𝐴 ) } ) ) ) | 
						
							| 5 |  | dffv3 | ⊢ ( ( 𝐹  shift  𝐴 ) ‘ 𝐵 )  =  ( ℩ 𝑥 𝑥  ∈  ( ( 𝐹  shift  𝐴 )  “  { 𝐵 } ) ) | 
						
							| 6 |  | dffv3 | ⊢ ( 𝐹 ‘ ( 𝐵  −  𝐴 ) )  =  ( ℩ 𝑥 𝑥  ∈  ( 𝐹  “  { ( 𝐵  −  𝐴 ) } ) ) | 
						
							| 7 | 4 5 6 | 3eqtr4g | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  𝐴 ) ‘ 𝐵 )  =  ( 𝐹 ‘ ( 𝐵  −  𝐴 ) ) ) |