Metamath Proof Explorer


Theorem shftval2

Description: Value of a sequence shifted by A - B . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 𝐹 ∈ V
Assertion shftval2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 shftfval.1 𝐹 ∈ V
2 subcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝐵 ) ∈ ℂ )
3 2 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴𝐵 ) ∈ ℂ )
4 addcl ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 𝐶 ) ∈ ℂ )
5 1 shftval ( ( ( 𝐴𝐵 ) ∈ ℂ ∧ ( 𝐴 + 𝐶 ) ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴𝐵 ) ) ) )
6 3 4 5 3imp3i2an ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴𝐵 ) ) ) )
7 pnncan ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴𝐵 ) ) = ( 𝐶 + 𝐵 ) )
8 7 3com23 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴𝐵 ) ) = ( 𝐶 + 𝐵 ) )
9 addcom ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
10 9 3adant1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
11 8 10 eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴𝐵 ) ) = ( 𝐵 + 𝐶 ) )
12 11 fveq2d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) )
13 6 12 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) )