Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
4 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 𝐶 ) ∈ ℂ ) |
5 |
1
|
shftval |
⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ ( 𝐴 + 𝐶 ) ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) ) ) |
6 |
3 4 5
|
3imp3i2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) ) ) |
7 |
|
pnncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐶 + 𝐵 ) ) |
8 |
7
|
3com23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐶 + 𝐵 ) ) |
9 |
|
addcom |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
11 |
8 10
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐵 + 𝐶 ) ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐹 ‘ ( ( 𝐴 + 𝐶 ) − ( 𝐴 − 𝐵 ) ) ) = ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) ) |
13 |
6 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 𝐶 ) ) = ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) ) |