Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
|
0cn |
⊢ 0 ∈ ℂ |
3 |
1
|
shftval2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 0 ) ) = ( 𝐹 ‘ ( 𝐵 + 0 ) ) ) |
4 |
2 3
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 0 ) ) = ( 𝐹 ‘ ( 𝐵 + 0 ) ) ) |
5 |
|
addid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 0 ) = 𝐴 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ ( 𝐴 + 0 ) ) = ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ 𝐴 ) ) |
8 |
|
addid1 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 + 0 ) = 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + 0 ) = 𝐵 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐹 ‘ ( 𝐵 + 0 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
11 |
4 7 10
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 shift ( 𝐴 − 𝐵 ) ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |