| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 3 | 1 | shftval | ⊢ ( ( - 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  - 𝐴 ) ‘ 𝐵 )  =  ( 𝐹 ‘ ( 𝐵  −  - 𝐴 ) ) ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  - 𝐴 ) ‘ 𝐵 )  =  ( 𝐹 ‘ ( 𝐵  −  - 𝐴 ) ) ) | 
						
							| 5 |  | subneg | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐵  −  - 𝐴 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  −  - 𝐴 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 7 |  | addcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 8 | 6 7 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  −  - 𝐴 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐹 ‘ ( 𝐵  −  - 𝐴 ) )  =  ( 𝐹 ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 10 | 4 9 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  - 𝐴 ) ‘ 𝐵 )  =  ( 𝐹 ‘ ( 𝐴  +  𝐵 ) ) ) |