| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 | ⊢ 𝐹  ∈  V | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | addcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐵  +  𝐴 )  ∈  ℂ ) | 
						
							| 4 | 1 | shftval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  +  𝐴 )  ∈  ℂ )  →  ( ( 𝐹  shift  𝐴 ) ‘ ( 𝐵  +  𝐴 ) )  =  ( 𝐹 ‘ ( ( 𝐵  +  𝐴 )  −  𝐴 ) ) ) | 
						
							| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐹  shift  𝐴 ) ‘ ( 𝐵  +  𝐴 ) )  =  ( 𝐹 ‘ ( ( 𝐵  +  𝐴 )  −  𝐴 ) ) ) | 
						
							| 6 |  | pncan | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐵  +  𝐴 )  −  𝐴 )  =  𝐵 ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝐹 ‘ ( ( 𝐵  +  𝐴 )  −  𝐴 ) )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 8 | 5 7 | eqtrd | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐹  shift  𝐴 ) ‘ ( 𝐵  +  𝐴 ) )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 9 | 8 | ancoms | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐹  shift  𝐴 ) ‘ ( 𝐵  +  𝐴 ) )  =  ( 𝐹 ‘ 𝐵 ) ) |