Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
Assertion | shincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
3 | 1 | elexi | ⊢ 𝐴 ∈ V |
4 | 2 | elexi | ⊢ 𝐵 ∈ V |
5 | 3 4 | intpr | ⊢ ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) |
6 | 1 2 | pm3.2i | ⊢ ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) |
7 | 3 4 | prss | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ↔ { 𝐴 , 𝐵 } ⊆ Sℋ ) |
8 | 6 7 | mpbi | ⊢ { 𝐴 , 𝐵 } ⊆ Sℋ |
9 | 3 | prnz | ⊢ { 𝐴 , 𝐵 } ≠ ∅ |
10 | 8 9 | pm3.2i | ⊢ ( { 𝐴 , 𝐵 } ⊆ Sℋ ∧ { 𝐴 , 𝐵 } ≠ ∅ ) |
11 | 10 | shintcli | ⊢ ∩ { 𝐴 , 𝐵 } ∈ Sℋ |
12 | 5 11 | eqeltrri | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Sℋ |