Metamath Proof Explorer


Theorem shincli

Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
Assertion shincli ( 𝐴𝐵 ) ∈ S

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 1 elexi 𝐴 ∈ V
4 2 elexi 𝐵 ∈ V
5 3 4 intpr { 𝐴 , 𝐵 } = ( 𝐴𝐵 )
6 1 2 pm3.2i ( 𝐴S𝐵S )
7 3 4 prss ( ( 𝐴S𝐵S ) ↔ { 𝐴 , 𝐵 } ⊆ S )
8 6 7 mpbi { 𝐴 , 𝐵 } ⊆ S
9 3 prnz { 𝐴 , 𝐵 } ≠ ∅
10 8 9 pm3.2i ( { 𝐴 , 𝐵 } ⊆ S ∧ { 𝐴 , 𝐵 } ≠ ∅ )
11 10 shintcli { 𝐴 , 𝐵 } ∈ S
12 5 11 eqeltrri ( 𝐴𝐵 ) ∈ S