Metamath Proof Explorer


Theorem shintcli

Description: Closure of intersection of a nonempty subset of SH . (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis shintcl.1 ( 𝐴S𝐴 ≠ ∅ )
Assertion shintcli 𝐴S

Proof

Step Hyp Ref Expression
1 shintcl.1 ( 𝐴S𝐴 ≠ ∅ )
2 1 simpri 𝐴 ≠ ∅
3 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧𝐴 )
4 intss1 ( 𝑧𝐴 𝐴𝑧 )
5 1 simpli 𝐴S
6 5 sseli ( 𝑧𝐴𝑧S )
7 shss ( 𝑧S𝑧 ⊆ ℋ )
8 6 7 syl ( 𝑧𝐴𝑧 ⊆ ℋ )
9 4 8 sstrd ( 𝑧𝐴 𝐴 ⊆ ℋ )
10 9 exlimiv ( ∃ 𝑧 𝑧𝐴 𝐴 ⊆ ℋ )
11 3 10 sylbi ( 𝐴 ≠ ∅ → 𝐴 ⊆ ℋ )
12 2 11 ax-mp 𝐴 ⊆ ℋ
13 ax-hv0cl 0 ∈ ℋ
14 13 elexi 0 ∈ V
15 14 elint2 ( 0 𝐴 ↔ ∀ 𝑧𝐴 0𝑧 )
16 sh0 ( 𝑧S → 0𝑧 )
17 6 16 syl ( 𝑧𝐴 → 0𝑧 )
18 15 17 mprgbir 0 𝐴
19 12 18 pm3.2i ( 𝐴 ⊆ ℋ ∧ 0 𝐴 )
20 elinti ( 𝑥 𝐴 → ( 𝑧𝐴𝑥𝑧 ) )
21 20 com12 ( 𝑧𝐴 → ( 𝑥 𝐴𝑥𝑧 ) )
22 elinti ( 𝑦 𝐴 → ( 𝑧𝐴𝑦𝑧 ) )
23 22 com12 ( 𝑧𝐴 → ( 𝑦 𝐴𝑦𝑧 ) )
24 shaddcl ( ( 𝑧S𝑥𝑧𝑦𝑧 ) → ( 𝑥 + 𝑦 ) ∈ 𝑧 )
25 6 24 syl3an1 ( ( 𝑧𝐴𝑥𝑧𝑦𝑧 ) → ( 𝑥 + 𝑦 ) ∈ 𝑧 )
26 25 3expib ( 𝑧𝐴 → ( ( 𝑥𝑧𝑦𝑧 ) → ( 𝑥 + 𝑦 ) ∈ 𝑧 ) )
27 21 23 26 syl2and ( 𝑧𝐴 → ( ( 𝑥 𝐴𝑦 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝑧 ) )
28 27 com12 ( ( 𝑥 𝐴𝑦 𝐴 ) → ( 𝑧𝐴 → ( 𝑥 + 𝑦 ) ∈ 𝑧 ) )
29 28 ralrimiv ( ( 𝑥 𝐴𝑦 𝐴 ) → ∀ 𝑧𝐴 ( 𝑥 + 𝑦 ) ∈ 𝑧 )
30 ovex ( 𝑥 + 𝑦 ) ∈ V
31 30 elint2 ( ( 𝑥 + 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑧𝐴 ( 𝑥 + 𝑦 ) ∈ 𝑧 )
32 29 31 sylibr ( ( 𝑥 𝐴𝑦 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 )
33 32 rgen2 𝑥 𝐴𝑦 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴
34 shmulcl ( ( 𝑧S𝑥 ∈ ℂ ∧ 𝑦𝑧 ) → ( 𝑥 · 𝑦 ) ∈ 𝑧 )
35 6 34 syl3an1 ( ( 𝑧𝐴𝑥 ∈ ℂ ∧ 𝑦𝑧 ) → ( 𝑥 · 𝑦 ) ∈ 𝑧 )
36 35 3expib ( 𝑧𝐴 → ( ( 𝑥 ∈ ℂ ∧ 𝑦𝑧 ) → ( 𝑥 · 𝑦 ) ∈ 𝑧 ) )
37 23 36 sylan2d ( 𝑧𝐴 → ( ( 𝑥 ∈ ℂ ∧ 𝑦 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝑧 ) )
38 37 com12 ( ( 𝑥 ∈ ℂ ∧ 𝑦 𝐴 ) → ( 𝑧𝐴 → ( 𝑥 · 𝑦 ) ∈ 𝑧 ) )
39 38 ralrimiv ( ( 𝑥 ∈ ℂ ∧ 𝑦 𝐴 ) → ∀ 𝑧𝐴 ( 𝑥 · 𝑦 ) ∈ 𝑧 )
40 ovex ( 𝑥 · 𝑦 ) ∈ V
41 40 elint2 ( ( 𝑥 · 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑧𝐴 ( 𝑥 · 𝑦 ) ∈ 𝑧 )
42 39 41 sylibr ( ( 𝑥 ∈ ℂ ∧ 𝑦 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 )
43 42 rgen2 𝑥 ∈ ℂ ∀ 𝑦 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴
44 33 43 pm3.2i ( ∀ 𝑥 𝐴𝑦 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 )
45 issh2 ( 𝐴S ↔ ( ( 𝐴 ⊆ ℋ ∧ 0 𝐴 ) ∧ ( ∀ 𝑥 𝐴𝑦 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) )
46 19 44 45 mpbir2an 𝐴S