| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shintcl.1 | ⊢ ( 𝐴  ⊆   Sℋ   ∧  𝐴  ≠  ∅ ) | 
						
							| 2 | 1 | simpri | ⊢ 𝐴  ≠  ∅ | 
						
							| 3 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  𝐴 ) | 
						
							| 4 |  | intss1 | ⊢ ( 𝑧  ∈  𝐴  →  ∩  𝐴  ⊆  𝑧 ) | 
						
							| 5 | 1 | simpli | ⊢ 𝐴  ⊆   Sℋ | 
						
							| 6 | 5 | sseli | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈   Sℋ  ) | 
						
							| 7 |  | shss | ⊢ ( 𝑧  ∈   Sℋ   →  𝑧  ⊆   ℋ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ⊆   ℋ ) | 
						
							| 9 | 4 8 | sstrd | ⊢ ( 𝑧  ∈  𝐴  →  ∩  𝐴  ⊆   ℋ ) | 
						
							| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑧 𝑧  ∈  𝐴  →  ∩  𝐴  ⊆   ℋ ) | 
						
							| 11 | 3 10 | sylbi | ⊢ ( 𝐴  ≠  ∅  →  ∩  𝐴  ⊆   ℋ ) | 
						
							| 12 | 2 11 | ax-mp | ⊢ ∩  𝐴  ⊆   ℋ | 
						
							| 13 |  | ax-hv0cl | ⊢ 0ℎ  ∈   ℋ | 
						
							| 14 | 13 | elexi | ⊢ 0ℎ  ∈  V | 
						
							| 15 | 14 | elint2 | ⊢ ( 0ℎ  ∈  ∩  𝐴  ↔  ∀ 𝑧  ∈  𝐴 0ℎ  ∈  𝑧 ) | 
						
							| 16 |  | sh0 | ⊢ ( 𝑧  ∈   Sℋ   →  0ℎ  ∈  𝑧 ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝑧  ∈  𝐴  →  0ℎ  ∈  𝑧 ) | 
						
							| 18 | 15 17 | mprgbir | ⊢ 0ℎ  ∈  ∩  𝐴 | 
						
							| 19 | 12 18 | pm3.2i | ⊢ ( ∩  𝐴  ⊆   ℋ  ∧  0ℎ  ∈  ∩  𝐴 ) | 
						
							| 20 |  | elinti | ⊢ ( 𝑥  ∈  ∩  𝐴  →  ( 𝑧  ∈  𝐴  →  𝑥  ∈  𝑧 ) ) | 
						
							| 21 | 20 | com12 | ⊢ ( 𝑧  ∈  𝐴  →  ( 𝑥  ∈  ∩  𝐴  →  𝑥  ∈  𝑧 ) ) | 
						
							| 22 |  | elinti | ⊢ ( 𝑦  ∈  ∩  𝐴  →  ( 𝑧  ∈  𝐴  →  𝑦  ∈  𝑧 ) ) | 
						
							| 23 | 22 | com12 | ⊢ ( 𝑧  ∈  𝐴  →  ( 𝑦  ∈  ∩  𝐴  →  𝑦  ∈  𝑧 ) ) | 
						
							| 24 |  | shaddcl | ⊢ ( ( 𝑧  ∈   Sℋ   ∧  𝑥  ∈  𝑧  ∧  𝑦  ∈  𝑧 )  →  ( 𝑥  +ℎ  𝑦 )  ∈  𝑧 ) | 
						
							| 25 | 6 24 | syl3an1 | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑥  ∈  𝑧  ∧  𝑦  ∈  𝑧 )  →  ( 𝑥  +ℎ  𝑦 )  ∈  𝑧 ) | 
						
							| 26 | 25 | 3expib | ⊢ ( 𝑧  ∈  𝐴  →  ( ( 𝑥  ∈  𝑧  ∧  𝑦  ∈  𝑧 )  →  ( 𝑥  +ℎ  𝑦 )  ∈  𝑧 ) ) | 
						
							| 27 | 21 23 26 | syl2and | ⊢ ( 𝑧  ∈  𝐴  →  ( ( 𝑥  ∈  ∩  𝐴  ∧  𝑦  ∈  ∩  𝐴 )  →  ( 𝑥  +ℎ  𝑦 )  ∈  𝑧 ) ) | 
						
							| 28 | 27 | com12 | ⊢ ( ( 𝑥  ∈  ∩  𝐴  ∧  𝑦  ∈  ∩  𝐴 )  →  ( 𝑧  ∈  𝐴  →  ( 𝑥  +ℎ  𝑦 )  ∈  𝑧 ) ) | 
						
							| 29 | 28 | ralrimiv | ⊢ ( ( 𝑥  ∈  ∩  𝐴  ∧  𝑦  ∈  ∩  𝐴 )  →  ∀ 𝑧  ∈  𝐴 ( 𝑥  +ℎ  𝑦 )  ∈  𝑧 ) | 
						
							| 30 |  | ovex | ⊢ ( 𝑥  +ℎ  𝑦 )  ∈  V | 
						
							| 31 | 30 | elint2 | ⊢ ( ( 𝑥  +ℎ  𝑦 )  ∈  ∩  𝐴  ↔  ∀ 𝑧  ∈  𝐴 ( 𝑥  +ℎ  𝑦 )  ∈  𝑧 ) | 
						
							| 32 | 29 31 | sylibr | ⊢ ( ( 𝑥  ∈  ∩  𝐴  ∧  𝑦  ∈  ∩  𝐴 )  →  ( 𝑥  +ℎ  𝑦 )  ∈  ∩  𝐴 ) | 
						
							| 33 | 32 | rgen2 | ⊢ ∀ 𝑥  ∈  ∩  𝐴 ∀ 𝑦  ∈  ∩  𝐴 ( 𝑥  +ℎ  𝑦 )  ∈  ∩  𝐴 | 
						
							| 34 |  | shmulcl | ⊢ ( ( 𝑧  ∈   Sℋ   ∧  𝑥  ∈  ℂ  ∧  𝑦  ∈  𝑧 )  →  ( 𝑥  ·ℎ  𝑦 )  ∈  𝑧 ) | 
						
							| 35 | 6 34 | syl3an1 | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑥  ∈  ℂ  ∧  𝑦  ∈  𝑧 )  →  ( 𝑥  ·ℎ  𝑦 )  ∈  𝑧 ) | 
						
							| 36 | 35 | 3expib | ⊢ ( 𝑧  ∈  𝐴  →  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  𝑧 )  →  ( 𝑥  ·ℎ  𝑦 )  ∈  𝑧 ) ) | 
						
							| 37 | 23 36 | sylan2d | ⊢ ( 𝑧  ∈  𝐴  →  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ∩  𝐴 )  →  ( 𝑥  ·ℎ  𝑦 )  ∈  𝑧 ) ) | 
						
							| 38 | 37 | com12 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ∩  𝐴 )  →  ( 𝑧  ∈  𝐴  →  ( 𝑥  ·ℎ  𝑦 )  ∈  𝑧 ) ) | 
						
							| 39 | 38 | ralrimiv | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ∩  𝐴 )  →  ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ℎ  𝑦 )  ∈  𝑧 ) | 
						
							| 40 |  | ovex | ⊢ ( 𝑥  ·ℎ  𝑦 )  ∈  V | 
						
							| 41 | 40 | elint2 | ⊢ ( ( 𝑥  ·ℎ  𝑦 )  ∈  ∩  𝐴  ↔  ∀ 𝑧  ∈  𝐴 ( 𝑥  ·ℎ  𝑦 )  ∈  𝑧 ) | 
						
							| 42 | 39 41 | sylibr | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ∩  𝐴 )  →  ( 𝑥  ·ℎ  𝑦 )  ∈  ∩  𝐴 ) | 
						
							| 43 | 42 | rgen2 | ⊢ ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ∩  𝐴 ( 𝑥  ·ℎ  𝑦 )  ∈  ∩  𝐴 | 
						
							| 44 | 33 43 | pm3.2i | ⊢ ( ∀ 𝑥  ∈  ∩  𝐴 ∀ 𝑦  ∈  ∩  𝐴 ( 𝑥  +ℎ  𝑦 )  ∈  ∩  𝐴  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ∩  𝐴 ( 𝑥  ·ℎ  𝑦 )  ∈  ∩  𝐴 ) | 
						
							| 45 |  | issh2 | ⊢ ( ∩  𝐴  ∈   Sℋ   ↔  ( ( ∩  𝐴  ⊆   ℋ  ∧  0ℎ  ∈  ∩  𝐴 )  ∧  ( ∀ 𝑥  ∈  ∩  𝐴 ∀ 𝑦  ∈  ∩  𝐴 ( 𝑥  +ℎ  𝑦 )  ∈  ∩  𝐴  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  ∩  𝐴 ( 𝑥  ·ℎ  𝑦 )  ∈  ∩  𝐴 ) ) ) | 
						
							| 46 | 19 44 45 | mpbir2an | ⊢ ∩  𝐴  ∈   Sℋ |