Metamath Proof Explorer


Theorem shjcli

Description: Closure of CH join. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
Assertion shjcli ( 𝐴 𝐵 ) ∈ C

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 shjcl ( ( 𝐴S𝐵S ) → ( 𝐴 𝐵 ) ∈ C )
4 1 2 3 mp2an ( 𝐴 𝐵 ) ∈ C