Step |
Hyp |
Ref |
Expression |
1 |
|
shjval |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
2 |
|
shjval |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐴 ) ) ) ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐴 ) ) ) ) |
4 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) |
5 |
4
|
fveq2i |
⊢ ( ⊥ ‘ ( 𝐵 ∪ 𝐴 ) ) = ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) |
6 |
5
|
fveq2i |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐴 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
7 |
3 6
|
eqtrdi |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
8 |
1 7
|
eqtr4d |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) |