Metamath Proof Explorer


Theorem shjcom

Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shjcom ( ( 𝐴S𝐵S ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )

Proof

Step Hyp Ref Expression
1 shjval ( ( 𝐴S𝐵S ) → ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
2 shjval ( ( 𝐵S𝐴S ) → ( 𝐵 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐴 ) ) ) )
3 2 ancoms ( ( 𝐴S𝐵S ) → ( 𝐵 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐴 ) ) ) )
4 uncom ( 𝐵𝐴 ) = ( 𝐴𝐵 )
5 4 fveq2i ( ⊥ ‘ ( 𝐵𝐴 ) ) = ( ⊥ ‘ ( 𝐴𝐵 ) )
6 5 fveq2i ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐴 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) )
7 3 6 eqtrdi ( ( 𝐴S𝐵S ) → ( 𝐵 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐵 ) ) ) )
8 1 7 eqtr4d ( ( 𝐴S𝐵S ) → ( 𝐴 𝐵 ) = ( 𝐵 𝐴 ) )