Metamath Proof Explorer
Description: Commutative law for join in SH . (Contributed by NM, 19-Oct-1999)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
shincl.1 |
⊢ 𝐴 ∈ Sℋ |
|
|
shincl.2 |
⊢ 𝐵 ∈ Sℋ |
|
Assertion |
shjcomi |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
shincl.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
shincl.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
shjcom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) |