Metamath Proof Explorer


Theorem shjshseli

Description: A closed subspace sum equals Hilbert lattice join. Part of Lemma 31.1.5 of MaedaMaeda p. 136. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shjshs.1 𝐴S
shjshs.2 𝐵S
Assertion shjshseli ( ( 𝐴 + 𝐵 ) ∈ C ↔ ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 shjshs.1 𝐴S
2 shjshs.2 𝐵S
3 1 2 shjshsi ( 𝐴 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 + 𝐵 ) ) )
4 ococ ( ( 𝐴 + 𝐵 ) ∈ C → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 + 𝐵 ) ) ) = ( 𝐴 + 𝐵 ) )
5 3 4 eqtr2id ( ( 𝐴 + 𝐵 ) ∈ C → ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) )
6 1 2 shjcli ( 𝐴 𝐵 ) ∈ C
7 eleq1 ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → ( ( 𝐴 + 𝐵 ) ∈ C ↔ ( 𝐴 𝐵 ) ∈ C ) )
8 6 7 mpbiri ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → ( 𝐴 + 𝐵 ) ∈ C )
9 5 8 impbii ( ( 𝐴 + 𝐵 ) ∈ C ↔ ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) )