Description: A closed subspace sum equals Hilbert lattice join. Part of Lemma 31.1.5 of MaedaMaeda p. 136. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shjshs.1 | ⊢ 𝐴 ∈ Sℋ | |
shjshs.2 | ⊢ 𝐵 ∈ Sℋ | ||
Assertion | shjshseli | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ↔ ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shjshs.1 | ⊢ 𝐴 ∈ Sℋ | |
2 | shjshs.2 | ⊢ 𝐵 ∈ Sℋ | |
3 | 1 2 | shjshsi | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
4 | ococ | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) = ( 𝐴 +ℋ 𝐵 ) ) | |
5 | 3 4 | eqtr2id | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
6 | 1 2 | shjcli | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
7 | eleq1 | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ↔ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) ) | |
8 | 6 7 | mpbiri | ⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ) |
9 | 5 8 | impbii | ⊢ ( ( 𝐴 +ℋ 𝐵 ) ∈ Cℋ ↔ ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |