Step |
Hyp |
Ref |
Expression |
1 |
|
shjshs.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
shjshs.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
shjval |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
5 |
1 2
|
shunssi |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |
6 |
1
|
shssii |
⊢ 𝐴 ⊆ ℋ |
7 |
2
|
shssii |
⊢ 𝐵 ⊆ ℋ |
8 |
6 7
|
unssi |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
9 |
1 2
|
shscli |
⊢ ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ |
10 |
9
|
shssii |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ |
11 |
8 10
|
occon2i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
12 |
5 11
|
ax-mp |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
13 |
4 12
|
eqsstri |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
14 |
1 2
|
shsleji |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
15 |
1 2
|
shjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
16 |
15
|
chssii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ |
17 |
|
occon |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ ) → ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
18 |
10 16 17
|
mp2an |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
19 |
14 18
|
ax-mp |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) |
20 |
|
occl |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ → ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ∈ Cℋ ) |
21 |
10 20
|
ax-mp |
⊢ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ∈ Cℋ |
22 |
15 21
|
chsscon1i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
23 |
19 22
|
mpbi |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
24 |
13 23
|
eqssi |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |