Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shle0 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sh0le | ⊢ ( 𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴 ) | |
2 | 1 | biantrud | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ ( 𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴 ) ) ) |
3 | eqss | ⊢ ( 𝐴 = 0ℋ ↔ ( 𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴 ) ) | |
4 | 2 3 | bitr4di | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) |