Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shle0 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sh0le | ⊢ ( 𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴 ) | |
| 2 | 1 | biantrud | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ ( 𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴 ) ) ) | 
| 3 | eqss | ⊢ ( 𝐴 = 0ℋ ↔ ( 𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴 ) ) | |
| 4 | 2 3 | bitr4di | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) |