Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
2 |
|
unss1 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ Sℋ ) |
4 |
|
shss |
⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ℋ ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐶 ∈ Sℋ ) |
7 |
|
shss |
⊢ ( 𝐶 ∈ Sℋ → 𝐶 ⊆ ℋ ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐶 ⊆ ℋ ) |
9 |
5 8
|
unssd |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∪ 𝐶 ) ⊆ ℋ ) |
10 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ Sℋ ) |
11 |
|
shss |
⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ ℋ ) |
13 |
12 8
|
unssd |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∪ 𝐶 ) ⊆ ℋ ) |
14 |
|
occon2 |
⊢ ( ( ( 𝐴 ∪ 𝐶 ) ⊆ ℋ ∧ ( 𝐵 ∪ 𝐶 ) ⊆ ℋ ) → ( ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) ) |
15 |
9 13 14
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) ) |
16 |
2 15
|
syl5 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) ) |
17 |
1 16
|
mpd |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) |
18 |
|
shjval |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ) |
19 |
3 6 18
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ) |
20 |
|
shjval |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) |
21 |
10 6 20
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∨ℋ 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) |
22 |
17 19 21
|
3sstr4d |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |