Metamath Proof Explorer


Theorem shlej2

Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shlej2 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐶 𝐴 ) ⊆ ( 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 shlej1 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐶 ) )
2 shjcom ( ( 𝐴S𝐶S ) → ( 𝐴 𝐶 ) = ( 𝐶 𝐴 ) )
3 2 3adant2 ( ( 𝐴S𝐵S𝐶S ) → ( 𝐴 𝐶 ) = ( 𝐶 𝐴 ) )
4 3 adantr ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 𝐶 ) = ( 𝐶 𝐴 ) )
5 shjcom ( ( 𝐵S𝐶S ) → ( 𝐵 𝐶 ) = ( 𝐶 𝐵 ) )
6 5 3adant1 ( ( 𝐴S𝐵S𝐶S ) → ( 𝐵 𝐶 ) = ( 𝐶 𝐵 ) )
7 6 adantr ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐵 𝐶 ) = ( 𝐶 𝐵 ) )
8 1 4 7 3sstr3d ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐶 𝐴 ) ⊆ ( 𝐶 𝐵 ) )