Step |
Hyp |
Ref |
Expression |
1 |
|
shlej1 |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
2 |
|
shjcom |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐴 ) ) |
3 |
2
|
3adant2 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐴 ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐴 ) ) |
5 |
|
shjcom |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) |
8 |
1 4 7
|
3sstr3d |
⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |