Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
| shless.1 | ⊢ 𝐶 ∈ Sℋ | ||
| Assertion | shlej2i | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shless.1 | ⊢ 𝐶 ∈ Sℋ | |
| 4 | 1 2 3 | shlej1i | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
| 5 | 3 1 | shjcomi | ⊢ ( 𝐶 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐶 ) |
| 6 | 3 2 | shjcomi | ⊢ ( 𝐶 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐶 ) |
| 7 | 4 5 6 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐶 ∨ℋ 𝐵 ) ) |