Metamath Proof Explorer


Theorem shlej2i

Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
shless.1 𝐶S
Assertion shlej2i ( 𝐴𝐵 → ( 𝐶 𝐴 ) ⊆ ( 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 shless.1 𝐶S
4 1 2 3 shlej1i ( 𝐴𝐵 → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐶 ) )
5 3 1 shjcomi ( 𝐶 𝐴 ) = ( 𝐴 𝐶 )
6 3 2 shjcomi ( 𝐶 𝐵 ) = ( 𝐵 𝐶 )
7 4 5 6 3sstr4g ( 𝐴𝐵 → ( 𝐶 𝐴 ) ⊆ ( 𝐶 𝐵 ) )