| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shlesb1.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | shlesb1.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | ssid | ⊢ 𝐵  ⊆  𝐵 | 
						
							| 4 | 3 | biantrur | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐵  ⊆  𝐵  ∧  𝐴  ⊆  𝐵 ) ) | 
						
							| 5 | 2 1 2 | shslubi | ⊢ ( ( 𝐵  ⊆  𝐵  ∧  𝐴  ⊆  𝐵 )  ↔  ( 𝐵  +ℋ  𝐴 )  ⊆  𝐵 ) | 
						
							| 6 | 2 1 | shsub2i | ⊢ 𝐵  ⊆  ( 𝐴  +ℋ  𝐵 ) | 
						
							| 7 |  | eqss | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  𝐵  ↔  ( ( 𝐴  +ℋ  𝐵 )  ⊆  𝐵  ∧  𝐵  ⊆  ( 𝐴  +ℋ  𝐵 ) ) ) | 
						
							| 8 | 6 7 | mpbiran2 | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  𝐵  ↔  ( 𝐴  +ℋ  𝐵 )  ⊆  𝐵 ) | 
						
							| 9 | 1 2 | shscomi | ⊢ ( 𝐴  +ℋ  𝐵 )  =  ( 𝐵  +ℋ  𝐴 ) | 
						
							| 10 | 9 | sseq1i | ⊢ ( ( 𝐴  +ℋ  𝐵 )  ⊆  𝐵  ↔  ( 𝐵  +ℋ  𝐴 )  ⊆  𝐵 ) | 
						
							| 11 | 8 10 | bitr2i | ⊢ ( ( 𝐵  +ℋ  𝐴 )  ⊆  𝐵  ↔  ( 𝐴  +ℋ  𝐵 )  =  𝐵 ) | 
						
							| 12 | 4 5 11 | 3bitri | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  +ℋ  𝐵 )  =  𝐵 ) |