Metamath Proof Explorer


Theorem shlesb1i

Description: Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlesb1.1 𝐴S
shlesb1.2 𝐵S
Assertion shlesb1i ( 𝐴𝐵 ↔ ( 𝐴 + 𝐵 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 shlesb1.1 𝐴S
2 shlesb1.2 𝐵S
3 ssid 𝐵𝐵
4 3 biantrur ( 𝐴𝐵 ↔ ( 𝐵𝐵𝐴𝐵 ) )
5 2 1 2 shslubi ( ( 𝐵𝐵𝐴𝐵 ) ↔ ( 𝐵 + 𝐴 ) ⊆ 𝐵 )
6 2 1 shsub2i 𝐵 ⊆ ( 𝐴 + 𝐵 )
7 eqss ( ( 𝐴 + 𝐵 ) = 𝐵 ↔ ( ( 𝐴 + 𝐵 ) ⊆ 𝐵𝐵 ⊆ ( 𝐴 + 𝐵 ) ) )
8 6 7 mpbiran2 ( ( 𝐴 + 𝐵 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) ⊆ 𝐵 )
9 1 2 shscomi ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 )
10 9 sseq1i ( ( 𝐴 + 𝐵 ) ⊆ 𝐵 ↔ ( 𝐵 + 𝐴 ) ⊆ 𝐵 )
11 8 10 bitr2i ( ( 𝐵 + 𝐴 ) ⊆ 𝐵 ↔ ( 𝐴 + 𝐵 ) = 𝐵 )
12 4 5 11 3bitri ( 𝐴𝐵 ↔ ( 𝐴 + 𝐵 ) = 𝐵 )