Description: Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
shless.1 | ⊢ 𝐶 ∈ Sℋ | ||
Assertion | shlessi | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 +ℋ 𝐶 ) ⊆ ( 𝐵 +ℋ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
3 | shless.1 | ⊢ 𝐶 ∈ Sℋ | |
4 | shless | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +ℋ 𝐶 ) ⊆ ( 𝐵 +ℋ 𝐶 ) ) | |
5 | 4 | ex | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +ℋ 𝐶 ) ⊆ ( 𝐵 +ℋ 𝐶 ) ) ) |
6 | 1 2 3 5 | mp3an | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 +ℋ 𝐶 ) ⊆ ( 𝐵 +ℋ 𝐶 ) ) |