Metamath Proof Explorer


Theorem shlessi

Description: Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
shless.1 𝐶S
Assertion shlessi ( 𝐴𝐵 → ( 𝐴 + 𝐶 ) ⊆ ( 𝐵 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 shless.1 𝐶S
4 shless ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 + 𝐶 ) ⊆ ( 𝐵 + 𝐶 ) )
5 4 ex ( ( 𝐴S𝐵S𝐶S ) → ( 𝐴𝐵 → ( 𝐴 + 𝐶 ) ⊆ ( 𝐵 + 𝐶 ) ) )
6 1 2 3 5 mp3an ( 𝐴𝐵 → ( 𝐴 + 𝐶 ) ⊆ ( 𝐵 + 𝐶 ) )