| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unss | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  ↔  ( 𝐴  ∪  𝐵 )  ⊆  𝐶 ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  𝐴  ∈   Sℋ  ) | 
						
							| 3 |  | shss | ⊢ ( 𝐴  ∈   Sℋ   →  𝐴  ⊆   ℋ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  𝐴  ⊆   ℋ ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  𝐵  ∈   Sℋ  ) | 
						
							| 6 |  | shss | ⊢ ( 𝐵  ∈   Sℋ   →  𝐵  ⊆   ℋ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  𝐵  ⊆   ℋ ) | 
						
							| 8 | 4 7 | unssd | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( 𝐴  ∪  𝐵 )  ⊆   ℋ ) | 
						
							| 9 |  | chss | ⊢ ( 𝐶  ∈   Cℋ   →  𝐶  ⊆   ℋ ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  𝐶  ⊆   ℋ ) | 
						
							| 11 |  | occon2 | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ⊆   ℋ  ∧  𝐶  ⊆   ℋ )  →  ( ( 𝐴  ∪  𝐵 )  ⊆  𝐶  →  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) )  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( ( 𝐴  ∪  𝐵 )  ⊆  𝐶  →  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) )  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) | 
						
							| 13 | 1 12 | biimtrid | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) )  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) | 
						
							| 14 |  | shjval | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 15 | 2 5 14 | syl2anc | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) ) ) | 
						
							| 16 |  | ococ | ⊢ ( 𝐶  ∈   Cℋ   →  ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) )  =  𝐶 ) | 
						
							| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) )  =  𝐶 ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  𝐶  =  ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) | 
						
							| 19 | 15 18 | sseq12d | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶  ↔  ( ⊥ ‘ ( ⊥ ‘ ( 𝐴  ∪  𝐵 ) ) )  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) | 
						
							| 20 | 13 19 | sylibrd | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶 ) ) | 
						
							| 21 |  | shub1 | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) | 
						
							| 22 | 2 5 21 | syl2anc | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) | 
						
							| 23 |  | sstr | ⊢ ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶 )  →  𝐴  ⊆  𝐶 ) | 
						
							| 24 | 22 23 | sylan | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  ∧  ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶 )  →  𝐴  ⊆  𝐶 ) | 
						
							| 25 |  | shub2 | ⊢ ( ( 𝐵  ∈   Sℋ   ∧  𝐴  ∈   Sℋ  )  →  𝐵  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) | 
						
							| 26 | 5 2 25 | syl2anc | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  𝐵  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) | 
						
							| 27 |  | sstr | ⊢ ( ( 𝐵  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶 )  →  𝐵  ⊆  𝐶 ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  ∧  ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶 )  →  𝐵  ⊆  𝐶 ) | 
						
							| 29 | 24 28 | jca | ⊢ ( ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  ∧  ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶 )  →  ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 ) ) | 
						
							| 30 | 29 | ex | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶  →  ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 ) ) ) | 
						
							| 31 | 20 30 | impbid | ⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ   ∧  𝐶  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  ↔  ( 𝐴  ∨ℋ  𝐵 )  ⊆  𝐶 ) ) |