Metamath Proof Explorer


Theorem shlubi

Description: Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlub.1 𝐴S
shlub.2 𝐵S
shlub.3 𝐶C
Assertion shlubi ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 𝐵 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 shlub.1 𝐴S
2 shlub.2 𝐵S
3 shlub.3 𝐶C
4 shlub ( ( 𝐴S𝐵S𝐶C ) → ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 𝐵 ) ⊆ 𝐶 ) )
5 1 2 3 4 mp3an ( ( 𝐴𝐶𝐵𝐶 ) ↔ ( 𝐴 𝐵 ) ⊆ 𝐶 )