| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shmod.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
shmod.2 |
⊢ 𝐵 ∈ Sℋ |
| 3 |
|
shmod.3 |
⊢ 𝐶 ∈ Sℋ |
| 4 |
1 2 3
|
shmodsi |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
| 5 |
|
ineq1 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ) |
| 6 |
5
|
sseq1d |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 7 |
4 6
|
imbitrid |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
| 8 |
7
|
imp |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
| 9 |
2 3
|
shincli |
⊢ ( 𝐵 ∩ 𝐶 ) ∈ Sℋ |
| 10 |
1 9
|
shsleji |
⊢ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) |
| 11 |
8 10
|
sstrdi |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) |