Step |
Hyp |
Ref |
Expression |
1 |
|
shmod.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
shmod.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
shmod.3 |
⊢ 𝐶 ∈ Sℋ |
4 |
1 2 3
|
shmodsi |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
5 |
|
ineq1 |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ) |
6 |
5
|
sseq1d |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
7 |
4 6
|
syl5ib |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
8 |
7
|
imp |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
9 |
2 3
|
shincli |
⊢ ( 𝐵 ∩ 𝐶 ) ∈ Sℋ |
10 |
1 9
|
shsleji |
⊢ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) |
11 |
8 10
|
sstrdi |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ) |