Step |
Hyp |
Ref |
Expression |
1 |
|
shmod.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
shmod.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
shmod.3 |
⊢ 𝐶 ∈ Sℋ |
4 |
|
elin |
⊢ ( 𝑧 ∈ ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ↔ ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) ) |
5 |
1 2
|
shseli |
⊢ ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) |
6 |
3
|
sheli |
⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ ) |
7 |
1
|
sheli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
8 |
2
|
sheli |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ℋ ) |
9 |
|
hvsubadd |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 ↔ ( 𝑥 +ℎ 𝑦 ) = 𝑧 ) ) |
10 |
6 7 8 9
|
syl3an |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 ↔ ( 𝑥 +ℎ 𝑦 ) = 𝑧 ) ) |
11 |
|
eqcom |
⊢ ( ( 𝑥 +ℎ 𝑦 ) = 𝑧 ↔ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) |
12 |
10 11
|
bitrdi |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 ↔ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) |
13 |
12
|
3expb |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 ↔ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) ) |
14 |
3 1
|
shsvsi |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 −ℎ 𝑥 ) ∈ ( 𝐶 +ℋ 𝐴 ) ) |
15 |
3 1
|
shscomi |
⊢ ( 𝐶 +ℋ 𝐴 ) = ( 𝐴 +ℋ 𝐶 ) |
16 |
14 15
|
eleqtrdi |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 −ℎ 𝑥 ) ∈ ( 𝐴 +ℋ 𝐶 ) ) |
17 |
1 3
|
shlesb1i |
⊢ ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 +ℋ 𝐶 ) = 𝐶 ) |
18 |
17
|
biimpi |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐴 +ℋ 𝐶 ) = 𝐶 ) |
19 |
18
|
eleq2d |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑧 −ℎ 𝑥 ) ∈ ( 𝐴 +ℋ 𝐶 ) ↔ ( 𝑧 −ℎ 𝑥 ) ∈ 𝐶 ) ) |
20 |
16 19
|
syl5ib |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 −ℎ 𝑥 ) ∈ 𝐶 ) ) |
21 |
|
eleq1 |
⊢ ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( ( 𝑧 −ℎ 𝑥 ) ∈ 𝐶 ↔ 𝑦 ∈ 𝐶 ) ) |
22 |
21
|
biimpd |
⊢ ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( ( 𝑧 −ℎ 𝑥 ) ∈ 𝐶 → 𝑦 ∈ 𝐶 ) ) |
23 |
20 22
|
sylan9 |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝑧 −ℎ 𝑥 ) = 𝑦 ) → ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐶 ) ) |
24 |
23
|
anim2d |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝑧 −ℎ 𝑥 ) = 𝑦 ) → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
25 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
26 |
24 25
|
syl6ibr |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝑧 −ℎ 𝑥 ) = 𝑦 ) → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
27 |
26
|
ex |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
28 |
27
|
com13 |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
29 |
28
|
ancoms |
⊢ ( ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
30 |
29
|
anasss |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 −ℎ 𝑥 ) = 𝑦 → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
31 |
13 30
|
sylbird |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) ) |
32 |
31
|
imp |
⊢ ( ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐴 ⊆ 𝐶 → 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) ) |
33 |
2 3
|
shincli |
⊢ ( 𝐵 ∩ 𝐶 ) ∈ Sℋ |
34 |
1 33
|
shsvai |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |
35 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ↔ ( 𝑥 +ℎ 𝑦 ) ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
36 |
34 35
|
syl5ibr |
⊢ ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
37 |
36
|
expd |
⊢ ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
38 |
37
|
com12 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
39 |
38
|
ad2antrl |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
40 |
39
|
imp |
⊢ ( ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
41 |
32 40
|
syld |
⊢ ( ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 = ( 𝑥 +ℎ 𝑦 ) ) → ( 𝐴 ⊆ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
42 |
41
|
exp31 |
⊢ ( 𝑧 ∈ 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝐴 ⊆ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) ) |
43 |
42
|
rexlimdvv |
⊢ ( 𝑧 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 +ℎ 𝑦 ) → ( 𝐴 ⊆ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
44 |
5 43
|
syl5bi |
⊢ ( 𝑧 ∈ 𝐶 → ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝐴 ⊆ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
45 |
44
|
com13 |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑧 ∈ 𝐶 → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) ) |
46 |
45
|
impd |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑧 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
47 |
4 46
|
syl5bi |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑧 ∈ ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) → 𝑧 ∈ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) ) |
48 |
47
|
ssrdv |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 +ℋ 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 +ℋ ( 𝐵 ∩ 𝐶 ) ) ) |