| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shmod.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | shmod.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | shmod.3 | ⊢ 𝐶  ∈   Sℋ | 
						
							| 4 |  | elin | ⊢ ( 𝑧  ∈  ( ( 𝐴  +ℋ  𝐵 )  ∩  𝐶 )  ↔  ( 𝑧  ∈  ( 𝐴  +ℋ  𝐵 )  ∧  𝑧  ∈  𝐶 ) ) | 
						
							| 5 | 1 2 | shseli | ⊢ ( 𝑧  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 6 | 3 | sheli | ⊢ ( 𝑧  ∈  𝐶  →  𝑧  ∈   ℋ ) | 
						
							| 7 | 1 | sheli | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈   ℋ ) | 
						
							| 8 | 2 | sheli | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈   ℋ ) | 
						
							| 9 |  | hvsubadd | ⊢ ( ( 𝑧  ∈   ℋ  ∧  𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  ↔  ( 𝑥  +ℎ  𝑦 )  =  𝑧 ) ) | 
						
							| 10 | 6 7 8 9 | syl3an | ⊢ ( ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  ↔  ( 𝑥  +ℎ  𝑦 )  =  𝑧 ) ) | 
						
							| 11 |  | eqcom | ⊢ ( ( 𝑥  +ℎ  𝑦 )  =  𝑧  ↔  𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 12 | 10 11 | bitrdi | ⊢ ( ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  ↔  𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 13 | 12 | 3expb | ⊢ ( ( 𝑧  ∈  𝐶  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  ↔  𝑧  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 14 | 3 1 | shsvsi | ⊢ ( ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 )  →  ( 𝑧  −ℎ  𝑥 )  ∈  ( 𝐶  +ℋ  𝐴 ) ) | 
						
							| 15 | 3 1 | shscomi | ⊢ ( 𝐶  +ℋ  𝐴 )  =  ( 𝐴  +ℋ  𝐶 ) | 
						
							| 16 | 14 15 | eleqtrdi | ⊢ ( ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 )  →  ( 𝑧  −ℎ  𝑥 )  ∈  ( 𝐴  +ℋ  𝐶 ) ) | 
						
							| 17 | 1 3 | shlesb1i | ⊢ ( 𝐴  ⊆  𝐶  ↔  ( 𝐴  +ℋ  𝐶 )  =  𝐶 ) | 
						
							| 18 | 17 | biimpi | ⊢ ( 𝐴  ⊆  𝐶  →  ( 𝐴  +ℋ  𝐶 )  =  𝐶 ) | 
						
							| 19 | 18 | eleq2d | ⊢ ( 𝐴  ⊆  𝐶  →  ( ( 𝑧  −ℎ  𝑥 )  ∈  ( 𝐴  +ℋ  𝐶 )  ↔  ( 𝑧  −ℎ  𝑥 )  ∈  𝐶 ) ) | 
						
							| 20 | 16 19 | imbitrid | ⊢ ( 𝐴  ⊆  𝐶  →  ( ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 )  →  ( 𝑧  −ℎ  𝑥 )  ∈  𝐶 ) ) | 
						
							| 21 |  | eleq1 | ⊢ ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  →  ( ( 𝑧  −ℎ  𝑥 )  ∈  𝐶  ↔  𝑦  ∈  𝐶 ) ) | 
						
							| 22 | 21 | biimpd | ⊢ ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  →  ( ( 𝑧  −ℎ  𝑥 )  ∈  𝐶  →  𝑦  ∈  𝐶 ) ) | 
						
							| 23 | 20 22 | sylan9 | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  ( 𝑧  −ℎ  𝑥 )  =  𝑦 )  →  ( ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  𝐶 ) ) | 
						
							| 24 | 23 | anim2d | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  ( 𝑧  −ℎ  𝑥 )  =  𝑦 )  →  ( ( 𝑦  ∈  𝐵  ∧  ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 ) )  →  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) ) | 
						
							| 25 |  | elin | ⊢ ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑦  ∈  𝐶 ) ) | 
						
							| 26 | 24 25 | imbitrrdi | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  ( 𝑧  −ℎ  𝑥 )  =  𝑦 )  →  ( ( 𝑦  ∈  𝐵  ∧  ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 ) )  →  𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝐴  ⊆  𝐶  →  ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  →  ( ( 𝑦  ∈  𝐵  ∧  ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 ) )  →  𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 28 | 27 | com13 | ⊢ ( ( 𝑦  ∈  𝐵  ∧  ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 ) )  →  ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  →  ( 𝐴  ⊆  𝐶  →  𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 29 | 28 | ancoms | ⊢ ( ( ( 𝑧  ∈  𝐶  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  →  ( 𝐴  ⊆  𝐶  →  𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 30 | 29 | anasss | ⊢ ( ( 𝑧  ∈  𝐶  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑧  −ℎ  𝑥 )  =  𝑦  →  ( 𝐴  ⊆  𝐶  →  𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 31 | 13 30 | sylbird | ⊢ ( ( 𝑧  ∈  𝐶  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑧  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝐴  ⊆  𝐶  →  𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ( 𝑧  ∈  𝐶  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  =  ( 𝑥  +ℎ  𝑦 ) )  →  ( 𝐴  ⊆  𝐶  →  𝑦  ∈  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 33 | 2 3 | shincli | ⊢ ( 𝐵  ∩  𝐶 )  ∈   Sℋ | 
						
							| 34 | 1 33 | shsvai | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  ( 𝑥  +ℎ  𝑦 )  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 35 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) )  ↔  ( 𝑥  +ℎ  𝑦 )  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 36 | 34 35 | imbitrrid | ⊢ ( 𝑧  =  ( 𝑥  +ℎ  𝑦 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐵  ∩  𝐶 ) )  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 37 | 36 | expd | ⊢ ( 𝑧  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 38 | 37 | com12 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑧  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 39 | 38 | ad2antrl | ⊢ ( ( 𝑧  ∈  𝐶  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑧  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ( 𝑧  ∈  𝐶  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  =  ( 𝑥  +ℎ  𝑦 ) )  →  ( 𝑦  ∈  ( 𝐵  ∩  𝐶 )  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 41 | 32 40 | syld | ⊢ ( ( ( 𝑧  ∈  𝐶  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑧  =  ( 𝑥  +ℎ  𝑦 ) )  →  ( 𝐴  ⊆  𝐶  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 42 | 41 | exp31 | ⊢ ( 𝑧  ∈  𝐶  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝑧  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝐴  ⊆  𝐶  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) ) ) | 
						
							| 43 | 42 | rexlimdvv | ⊢ ( 𝑧  ∈  𝐶  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝑧  =  ( 𝑥  +ℎ  𝑦 )  →  ( 𝐴  ⊆  𝐶  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 44 | 5 43 | biimtrid | ⊢ ( 𝑧  ∈  𝐶  →  ( 𝑧  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝐴  ⊆  𝐶  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 45 | 44 | com13 | ⊢ ( 𝐴  ⊆  𝐶  →  ( 𝑧  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑧  ∈  𝐶  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) ) | 
						
							| 46 | 45 | impd | ⊢ ( 𝐴  ⊆  𝐶  →  ( ( 𝑧  ∈  ( 𝐴  +ℋ  𝐵 )  ∧  𝑧  ∈  𝐶 )  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 47 | 4 46 | biimtrid | ⊢ ( 𝐴  ⊆  𝐶  →  ( 𝑧  ∈  ( ( 𝐴  +ℋ  𝐵 )  ∩  𝐶 )  →  𝑧  ∈  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 48 | 47 | ssrdv | ⊢ ( 𝐴  ⊆  𝐶  →  ( ( 𝐴  +ℋ  𝐵 )  ∩  𝐶 )  ⊆  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) |