| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							issh2 | 
							⊢ ( 𝐻  ∈   Sℋ   ↔  ( ( 𝐻  ⊆   ℋ  ∧  0ℎ  ∈  𝐻 )  ∧  ( ∀ 𝑥  ∈  𝐻 ∀ 𝑦  ∈  𝐻 ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							simprbi | 
							⊢ ( 𝐻  ∈   Sℋ   →  ( ∀ 𝑥  ∈  𝐻 ∀ 𝑦  ∈  𝐻 ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							simprd | 
							⊢ ( 𝐻  ∈   Sℋ   →  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 )  | 
						
						
							| 4 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ·ℎ  𝑦 )  =  ( 𝐴  ·ℎ  𝑦 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻  ↔  ( 𝐴  ·ℎ  𝑦 )  ∈  𝐻 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ·ℎ  𝑦 )  =  ( 𝐴  ·ℎ  𝐵 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq1d | 
							⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ·ℎ  𝑦 )  ∈  𝐻  ↔  ( 𝐴  ·ℎ  𝐵 )  ∈  𝐻 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							rspc2v | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  𝐻 )  →  ( ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻  →  ( 𝐴  ·ℎ  𝐵 )  ∈  𝐻 ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							syl5com | 
							⊢ ( 𝐻  ∈   Sℋ   →  ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴  ·ℎ  𝐵 )  ∈  𝐻 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3impib | 
							⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝐴  ∈  ℂ  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴  ·ℎ  𝐵 )  ∈  𝐻 )  |