| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issh2 |
⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
| 2 |
1
|
simprbi |
⊢ ( 𝐻 ∈ Sℋ → ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) |
| 3 |
2
|
simprd |
⊢ ( 𝐻 ∈ Sℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) |
| 4 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ℎ 𝑦 ) = ( 𝐴 ·ℎ 𝑦 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ↔ ( 𝐴 ·ℎ 𝑦 ) ∈ 𝐻 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ℎ 𝑦 ) = ( 𝐴 ·ℎ 𝐵 ) ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ·ℎ 𝑦 ) ∈ 𝐻 ↔ ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) ) |
| 8 |
5 7
|
rspc2v |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 → ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) ) |
| 9 |
3 8
|
syl5com |
⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) ) |
| 10 |
9
|
3impib |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) |