Metamath Proof Explorer


Theorem shne0i

Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis shne0.1 𝐴S
Assertion shne0i ( 𝐴 ≠ 0 ↔ ∃ 𝑥𝐴 𝑥 ≠ 0 )

Proof

Step Hyp Ref Expression
1 shne0.1 𝐴S
2 df-ne ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 )
3 df-rex ( ∃ 𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ 0 ) )
4 nss ( ¬ 𝐴 ⊆ 0 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ 0 ) )
5 shle0 ( 𝐴S → ( 𝐴 ⊆ 0𝐴 = 0 ) )
6 1 5 ax-mp ( 𝐴 ⊆ 0𝐴 = 0 )
7 6 notbii ( ¬ 𝐴 ⊆ 0 ↔ ¬ 𝐴 = 0 )
8 3 4 7 3bitr2ri ( ¬ 𝐴 = 0 ↔ ∃ 𝑥𝐴 ¬ 𝑥 ∈ 0 )
9 elch0 ( 𝑥 ∈ 0𝑥 = 0 )
10 9 necon3bbii ( ¬ 𝑥 ∈ 0𝑥 ≠ 0 )
11 10 rexbii ( ∃ 𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃ 𝑥𝐴 𝑥 ≠ 0 )
12 2 8 11 3bitri ( 𝐴 ≠ 0 ↔ ∃ 𝑥𝐴 𝑥 ≠ 0 )